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Acronyms and abbreviations
AD Applicable Document
AO Adaptive Optics
CANARY Durham/LESIA on-sky AO demonstrator
CPU Central Processing Unit
CUDA NVIDIA GPU based software development language
DARC Durham AO Real-time Controller
DDS Data Distribution Service
DM Deformable Mirror
DRAGON Durham laboratory-based AO demonstrator bench
ELT Extremely Large Telescope
E-ELT European ELT
ESO European Souther Observatory
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
GUI Graphical User Interface
HLS High Level Synthesis
HPC High Performance Computing
MIC Many Integrated Core
MVM Matrix-Vector Multiplication
NIC Network Interface Controller
PCIe Peripheral Component Interconnect express
RD Reference Document
RTC Real-Time Control
RTL Register Transfer Level
SIMD Single Instruction Multiple Data
SPARTA ESO VLT AO Real-time Control System
SHERE VLT Planet finder instrument
UDP User Datagram Protocol
UK ATC United Kingdom Astronomical Technology Centre
VLT Very Large Telescope
WES Wave-Front Sensor
WP Work Package
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1 Scope

This document specifies the top level architecture for both the software and hardware of
GreenFlash.

As the project objective is to find an optimum design for a prototype system, this architecture
will evolve significantly during the course of the project. This document therefore only
specifies the high level systems, sub-systems and some modules of the design and indicates
how they may be interconnected. It defines the hardware and software options that will be
investigated leading to the down-selection for the final prototype system.

2 Hardware Architecture

The starting point for the overall hardware architecture is the existing distributed design used
for SPARTA. The overall design consists of 3 systems:

* Hard real-time data pipeline
*  Soft real-time system
* Simulator system

The hard real-time data pipeline must meet the requirements for high throughput, low latency
and low jitter (high determinacy). It takes as input pixel data from multiple cameras and
provides as output the drive data for multiple deformable mirrors.

The soft real-time system provides an HPC facility for the configuration, calibration, control
and optimisation of the hard real-time pipeline.

The simulator system provides accurate simulation at real-time frame rates of hardware
components in their absence, such as WFS cameras and deformable mirrors.

The top level system engineering diagram for the full system is shown in a very generalised
form in Figure 1.
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Figure 1: Top Level System Engineering Diagram.

2.1 Real-time Data Pipeline System

This is the low latency, low jitter data pipeline. The system consists of four separate sub-
systems that will likely run on the same computer hardware (e.g. to provide low latency
shared memory middleware) or could be distributed to multiple hardware systems via data
switches. The sub-systems are:

* Pixel Calibration

* Centroiding

*  Wave-front reconstruction
* DM controller

The down-selection of hardware for the real-time data pipeline is a part of the project and
several different hardware options will be tested. These include: Field Programmable Gate
Arrays (FPGA), Graphics Processing Units (GPU), Many Integrated Core processors (MIC)
and conventional CPUs. There are two possible configurations for the data pipeline:
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1. A CPU host that is a part of the pipeline with hardware accelerators likely accessed
over PCle

2. A fully embedded system with data input and output directly to/from the pipeline
hardware with the host CPU system not a part of the pipeline

These two configurations are shown in cartoon form in Figure 2 and both configurations will
be investigated. In both cases, there are various options for the embedded or acceleration
hardware and for its configuration.

WFS DM WFS
Camera Camera

DM

Accelerator Data Flow Embedded Data Flow

Figure 2: Alternative data pipeline hardware configurations. The
arrows represent the flow of data.

The hardware that will be tested must be highly parallel and provide sufficient numbers of
concurrent processing units/coprocessors operating in parallel to meet the system
requirements. The hardware and configuration options that will be tested are outlined below:

2.1.1 Accelerator Hardware Options

The pixel calibration, centroiding and wave-front reconstruction by matrix-vector-
multiplication (MVM) are all highly parallelizable processes. For a large system, they can be
performed much faster (compared to the CPU) on hardware that is designed specifically for
parallelizable algorithms. We refer to this hardware as “accelerators”. In this architecture,
computationally intensive tasks are offloaded to accelerators.

The accelerators to be investigates are GPUs, MICs (Xeon Phi) and FPGAs. Whilst all of
these technologies can provide parallel processing, the architectures are significantly different
with advantages and disadvantages for this application. The FPGAs bring an additional
advantage in providing determinacy, reducing the resultant jitter to close to zero.

Separate prototype systems will be constructed to demonstrate the relative capabilities of
each accelerator. The functionality of each system will be the same.

In the following we briefly describe the specifics of each accelerator. In sections 2.1.2 - 2.1.4
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we then discuss different architectural options for the use of these accelerators.

2.1.1.1 GPU accelerators

GPUs provide massively parallel systems (100s to 1000s of processing units) that are
specifically designed for applying single instructions to multiple data in parallel (SIMD). As
such they are very powerful technology for performing the sort of linear algebra that is
required in an AO RTC. This technology will be investigated as a candidate in all three of the
main Green Flash systems: Data Pipeline, Soft Real-time and Simulator. The investigation of
distributed GPUs for real-time HPC is a major work-package in Green Flash and is described
in detail in RDOS.

2.1.1.2 Xeon Phi accelerators

Recent years have seen the emergence of Many Integrated Core processors as a competing
hardware acceleration technology to GPUs. The most common example is the Xeon Phi.
These devices sacrifice some of the complex functionality of the multiple cores found in
standard CPUs in order to provide up to 60 (in current devices) cores on a single chip. The
devices are currently packaged in a similar format to GPUs, on an extension card accessed
over PCle with correspondingly high data transfer rates. Unlike a GPU however, they can act
as stand-alone devices with all of the application code running on them rather than partially
on a host CPU system. The road-map for these devices may see them used as the standard
processor on computer server mother-boards.

The advantages of the Phi over GPUs are:

1. They are programmed in C with some extensions to support their large scale parallel
nature. Thus code written by application programmers in C can be readily ported to
these devices. There is no specialist development language, such as Nvidia CUDA for
GPUs, that must be learnt by the programmer. The development cycle is thus very
fast.

2. Whilst the many cores can be applied in a SIMD configuration as is done with GPUs,
there is the option for sub-sets of the cores to perform separate and independent tasks.
This provides an additional flexibility that is absent from GPUs.

A Green Flash work-package will draw comparisons in the performance of these devices
against that provided by GPUs (and indeed FPGAs). Just as in CPU devices, they are
susceptible to system jitter albeit at a lower level.

Initial investigations of the performance of these devices has already started at CfAl in
Durham (in collaboration with the UK ATC) with encouraging results. A full prototype RTC
with MIC acceleration will be tested using existing devices and can be expanded to include
the stand-alone version (Knight's Landing) that is expected to emerge during 2016.
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2.1.1.3 FPGA accelerators

Whilst FPGAs accelerators are an option for the data pipeline, the advantages in determinacy
(low system jitter) that they provide are more likely to be employed in an embedded
configuration than as an accelerator. This embedded FPGA data pipeline option is described
in AD06. FPGAs also represent an attractive option for interfacing both between the various
systems and modules and to/from external WFSs and DMs. This 'smart interconnect' concept
is described in ADO7.

However, new FPGA development tools, and particularly the PLDA Quickplay tool, also
make FPGA accelerators an attractive option for algorithm acceleration in the soft real-time
optimiser sub-system and as a part of the real-time simulator system and these options will be
investigated. A brief introduction to FPGAs and the tools now available for their
programming is given here:

FPGA Background

The modern FPGA has developed far beyond a cluster of programmable gates. It normally
integrates with high end digital components, such as multi-gigabit transceivers, high speed
memory interface, the latest I/O interfaces and controllers (e.g. PCle), embedded DSP
processing units (hardware multiplier), embedded memory blocks etc. All these make FPGA
a flexible yet powerful digital processing solution especially for those parallel tasks with hard
real-time requirements. However, programming of FPGA can be a slow and costly procedure.
This is partially due to the customized logic and the parallel complexity of the system where
timing always plays a vital role. Moreover, the tools addressing FPGA development are
traditionally focused at the RTL level (Verilog or VHDL), which has analogies to assembler
and lacks the development efficiency of high level compilers.

Debugging FPGA logic is another lengthy and frustrating process. Simulation is often used
by the engineers to verify the design logic. There are usually two kinds of such simulation:
functional simulation and timing simulation. The functional simulation is to test that the
designed FPGA logic works to the required specification. The timing simulation tests that the
physical speed of the FPGA can be achieved. Luckily timing tools are provided by the FPGA
vendors. In most designs, timing is statically analysed and a logic analyser can be used to test
the FPGA logic in real-time.

All of this complexity is gradually being abstracted from the programmer by high level
development tools. The evaluation and use of these tools is critical to the use of FPGA
technology in Green Flash.

FPGA programming Methodology

Nowadays there several different approaches to FPGA development. These are identified
here. As with any technology, each option has its own features and limitations. Green Flash
will identify and verify the best options to use for higher level FPGA development to improve
productivity. Although all of these methods may have a role to play, the project will
concentrate mainly on demonstrating the efficacy of the PLDA Quickplay tool.

1. Register-Transfer Level (RTL)
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The use of the traditional RTL based design method should not been overlooked.
Whilst it does not provide the powerful development environment that we require, it
can be very useful in interfacing standard IP cores very efficiently and can play a role
in even where higher level methodologies dominate.

High Level Synthesis (HLS)

The claim for HLS is that the FPGA can be programmed with a popular programming
language, normally a limited version of C. Xilinx Vivado HLS is one such option.
Whilst this is a powerful technique, it does not provide the full abstraction that allows
the non-specialist to easily produce FPGA code. The PLDA tool Quickplay (see
below) builds on top of HLS. It thus takes the final step to providing an easy
development methodology. It is this highest level of abstraction that will be
investigated by Green Flash.

OpenCL

OpenCL is an initiative to provide cross-platform and even cross-architecture
computing acceleration. Similar to the Nvidia GPU CUDA architecture, the
application logic is built as blocks of kernel and is uploaded to the accelerator. The
data is provided in a form of buffer and the result is also transferred from the
accelerator to the host in a buffer. Although the portability of the acceleration is a very
promising feature, the buffer based data transfer does not match the stream based
architecture of, for example, the pixel stream handing of an AO real-time system.

PLDA Quickplay

PLDA Quickplay has the potential to provide a fully abstracted development
environment for FPGA software. Its architecture is especially well suited to the design
of an AO RTC system. Firstly, it brings up a system architecture based on the Kahn
Process Network (KPN), which connects multiple processing kernels via FIFO based
stream interfaces. This model matches the data flow of an AO RTC. Secondly,
Quickplay provides a HLS system allowing the application model to be described in
C style programming language allowing much of the functionality to be simulated and
debugged with readily available C tools. Furthermore, Quickplay is an integrated
environment. The host system interface and the standard communication interface are
all provided and tested. The developer can concentrate almost entirely on the user
application. A diagram of the QuickPlay work flow (from www.quickplay.io) is
shown in Figure 3.
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void Main (gpIStream &data_in, qpOStream &data_out) {
gpCreateStream(st1, t&.sﬂs«ﬂﬁ)
gpCreateKernel("kernel _1", kernelFunction(function_1), data_in, st1);
mCuch.mdﬂumd_Z’ kernelFunction(function_2), st1, st2, st3, void* mem);

}
void function_1 (qplsveamadm_mmosvwn&dm_m)( Kemel k Kernel Keme'

qpnndsmam(duq_h matrix,1024); Kernel
for (i=0; i<1024; i++) H
matrix[i] *= matrix[i-1]; mory

qpWriteStream(data_out,matrix,1024,true);

Frontend Backend

C/C++ Compiler Verilog

1001 Ghain

x86 Executable

Figure 3: PLDA Quickplay FPGA development methodology

The core of the FPGA application can be built in the C programming language and go
through the familiar test and verification procedure as seen in the left vertical path,
after which the design can go through the HLS and system component integration
(right vertical path) to automatically generate the FPGA bitstream with the same
functionality but with the desired real-time performance and determinism.

Whilst traditional FPGA tools will be used where required, most of the FPGA based
acceleration architectures will be targeted with Quickplay

2.1.2 Accelerator Configuration Options

Whichever of the acceleration technologies discussed above is used, there are various options
for how much of the data pipeline is migrated to the accelerator and how much remains in the
CPU. We intend to test the options described in the following sections in order to provide a
clear understanding of the advantage of each configuration. The options in this section
represent the baseline accelerated system with no smart interfaces. Pixel data are captured by
the CPU. Then there are three options:

(a) no acceleration. The full data pipeline is implemented in CPU.

(b) pixel calibration and centroiding are performed on the CPU and centroids are copied to
the accelerator (section 2.1.2.2, Figure 5), or
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(c) pixel data are copied to the accelerator, where then the pixel calibration and centroiding
are performed (section 2.1.2.3, Figure 6).

In (b) and (¢), the MVM is performed on the accelerator. This is because, for systems at ELT
scales, the wave-front reconstruction by MVM dominates the computational requirements. In
both cased the DM commands are copied back to the CPU and sent to the DM.

While the accelerator performs the computations faster, the additional steps of copying the
data to the accelerator and copying the result back to the CPU add to latency: the overall gain
in time is the difference between the speed-up time and the data-copying time. Data copying
may also increase jitter. The object of investigating the use of this accelerated architecture is
to demonstrate the performance levels that can be achieved and the advantages and
disadvantages of this option.

2.1.2.1 CPU-only option

This option, with no hardware acceleration, is included as a baseline for comparison purposes
and is illustrated in Figure 4. The data pipeline will be implemented in C on a top end server
with typically 2 off 6 core processors. The system will be multi-threaded (up to 12 threads or
24 if hyper-threaded). Whilst such systems are common in low order AO systems on 4m and
8m class telescopes, the throughput will naturally be limited for ELT scale systems and
unable to meet the requirements. However, we will demonstrate what can be achieved with
'pure-CPU-systems'. The maximum frame rates that can be achieved will be measured along
with the jitter. The latter will depend critically on the Linux kernel used. This system will
allow us to demonstrate what can be achieved using non-real-time and real-time kernels.
These results will demonstrate the sort of acceleration factors that must be achieved with the
accelerated and embedded options.

WFS Camnera DM

Pixel oo Wavefront DM

Figure 4: The CPU-only system.

2.1.2.2 Only MVM on the accelerator

For a large AO system, wave-front reconstruction by MVM takes about 70%-80% of
processing time in each cycle. By offloading this task to an accelerator as illustrated in Figure
5, a significant speed-up can be achieved. The amount of data that needs to be copied from
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the CPU to the accelerator on each cycle is small: the centroids copied consist of 2*N floating
point numbers, where N is the number of sub-apertures. Hence the acceleration of MVM
easily makes up for the time lost due to the extra data-copying.

Pixel P DM

Wavefront
reconstruction

Figure 5: MVM, which is the most computationally demanding part of the data
processing pipeline, is processed by the accelerator.

2.1.2.3 The whole pipeline on the accelerator

Performing all the processing steps on the accelerator as illustrated in Figure 6, has the
advantage of speeding-up also the pixel processing and centroiding which are both highly
parallelizable operations. However, the amount of data to be copied from the CPU to the
accelerator is much larger with this architescture, at least npix*N floating point numbers.
Here N is the number of subapertures and npix is the number of pixels in each subaperture,
which for a laser guide star could be 16%16 or 20*20. To have the option of dynamic
centroiding (where sub-aperture borders are re-defined on the frame-by-frame basis to follow
the movement of the spot), one would need to copy entire frames to the accelerator and the
amount of data would be even larger. This can lead to an increase of latency of a milisecond
or more.

However, we note that the GPUs offer the possibility to perform a significant part of data
copying in parallel to data processing, largely masking the copying time and reducing the
increase in latency.
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DM

Pixel . Wavefront

Figure 6: All the data processing happens on the accelerator and the CPU is
used to interface the camera and the DM.

2.1.3 Accelerated System with Smart WFS Interface

This architecture is illustrated in Figure 7 and represents one step towards a fully embedded
data pipeline by introducing a smart WFS interface. The pixel data are copied directly to the
accelerator where they are processed. The DM commands are still copied to the CPU and sent
to the DM. Note the accelerator could be a hybrid with, for example, pixel processing
implemented in a FPGA and consequently MVM performed on a GPU.
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Pixel o W awvefront

Figure 7: Pixel data are captured directly by the accelerator, by-passing the
CPU.

Capturing the pixel data from the camera directly to the accelerator, by-passing the CPU has
a big advantage of reducing both latency and jitter. The 'smart interface' can be provided by
FPGA based technology in which some element of also pre-processing can be implemented.
Leaving the DM interface CPU based and un-changed will allow us to investigate the
advantage to be obtained in throughput and jitter from this intelligent WFS to accelerator
interface alone.

2.1.4 Fully Embedded Data Pipeline

Adding a second interface directly from the accelerators to the DM results in what we refer to
as a 'fully embedded' data pipeline where the CPU host is responsible only for configuration
and control issues. This option represents the embedded data flow configuration of Figure 2.

As in 2.1.3, the pixel data flows directly into the accelerator from the WFSs, but now also the
DM is controlled by the accelerator, avoiding the CPU completely. As illustrated in Figure 8,
the CPU is used for configuration only further reducing both latency and jitter. However,
controlling a DM directly from an accelerator would require development of specialised
software and hardware, most likely in close collaboration with the manufacturer of the DM
used.

The investigation of a fully embedded data pipeline, possibly including a hybrid of FPGA and
GPU technology, is a major work package within Green Flash. The development of an FPGA
based micro-server will be investigated by Microgate (see AD06) and the use of multiple
distributed GPUs by LESIA (see ADO05).
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WFS Camera DM

Pixel ot Wavefront DM

Figure 8: A fully embedded pipeline: the data by-passes the CPU completely.

2.2 Soft Real-time System

The soft real-time system is responsible for the configuration, calibration, control and
optimisation of the hard real-time pipeline. Many of the algorithms required will
require substantial computational power. This power is likely to be provided by
technology similar to that used for the data pipeline. The configuration will likely be
an accelerator data flow where a cpu host offloads large tasks to accelerator hardware.

The hardware requirements of the soft real-time system are defined by the
functionality that can be seen in Figure 1:

1. The supervisor — This sub-system contains the primary functionality of the soft

real-time system and is responsible for the configuration and optimisation of
the AO data pipeline. The software makes use of data pipeline telemetry and
external data (such as from turbulence profilers) to update the pipeline
parameters including the control matrix. The principal requirement is therefore
for an HPC system that is capable of performing the required calculations and
updating the data pipeline on a timescale consistent with the changing
atmospheric and telescope conditions. Since simulations have shown that such
updates may be required by ELT scale systems as frequently as every 10
seconds, the HPC system will require acceleration hardware. The candidates
for the hardware to provide the required acceleration are the same as those for
the data pipeline (GPU, FPGA, MIC). The tools and techniques that are used
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will thus be common to the development of both systems (and indeed to the

simulator). The supervisor is a major work-package within Green Flash and is
described in AD09.

2. Telemetry handling — All of the AO data generated by the data pipeline must be
transferred to the telemetry system and made available to the supervisor and to
the user interface as well as being stored. This is not a processing intensive
application but requires hardware and middleware capable of dealing with very
large data streams. It is highly likely that the data transport fabric will be
Ethernet and suitable NIC devices will be investigated along with the
associated switches. As is true throughout the RTC system, the concept of
'smart interfaces' will be applied to this data handling problem.

3. The data pipeline controller is responsible for sequencing and synchronising
the pipeline. It handles all of the parameter updates whatever their source (user
interface or supervisor). It has no requirements for processing or data handling
outside of what can be provided by applications running on a standard CPU
server.

2.3 Simulator System

The proposed simulator system is a development that has not been a feature of previous AO
RTC systems. The top level requirement is to simulate elements of the AO system that are
physically absent. This includes simulation of:

* Camera pixel data
*  Wave-front sensors
e Deformable mirrrors

* The atmosphere (phase screens)

2.3.1 Simulator hardware options

Pixel data simulation allows cameras to be tested that are not present or may not yet exist!
The data stream must be deterministic to correctly represent a camera pixel stream. This
module is thus a prime candidate for FPGA technology. Pixel simulation will enable the exact
latency and jitter of the RTC to be measure. An electronic signal can be fed back from various
stages of the RTC to the simulator. This ability to measure system latency and jitter will be

critical to determining the exact performance of both the data pipeline and the simulator in
Green Flash.

The other modules will be simulated using the same or similar technology to that employed
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for both the data pipeline and the soft real-time system. It will be possible to run the data
pipeline with none, one or several aspects in simulation. Existing AO simulation code
generally runs at much slower than real-time rates. Such code can be accelerated to close to
the target rates of the data pipe-line using accelerator technology.

Since there is no president yet for such a system, Green Flash will investigate whether the
simulator system should be in the form of a separate data pipeline linked to the primary
pipeline or whether some form of CPU hosted and accelerated design can be employed.

2.3.2 Simulator to data pipeline interface

The pixel simulator will provide data to the pipeline via the same interface as real WFS
camera. However, the form of the interface for data from the simulated WFS into the data
pipeline and similarly for reconstructed data from the pipeline to a simulated DM will need to
be defined. This problem is the subject of a work-package within Green Flash. System
interfaces are described briefly in section 2.4 and are listed in ADOS.

2.4 Data Pipeline Interfaces

The data pipeline has four interfaces and various options will be investigated for each.
A detailed list and description of these interfaces is provided in ADOS. A brief
summary is given here:

2.4.1 Data Pipeline to WFS Interface Options

This interface carries the WFS camera pixel data from the camera (or camera simulator) to
the pixel handling module. Whilst the pixel handling module is a part of the real-time data
pipeline, all or part of the pixel handling may be implemented as a part of a 'smart interface’'
using FPGA technology. This interface may be located close to or remote from the actual
cameras.

It is highly likely that the data transport for WFS camera data will be Ethernet and this will be
the standard adopted by Green Flash. Legacy camera protocols such as Camera Link can be
easily converted to Ethernet by commercial hardware and software so that existing non-
Ethernet cameras can be used for testing when required.

Many commercial cameras use frame grabber hardware for this interface. This is not suitable
for an AO RTC since it adds to the overall latency of the system. Camera data will be
processed as the stream of pixels arrive. Thus the pixel processing is performed in parallel
with the camera readout. This technique was used both in SPARTA and in the CANARY on-
sky AO demonstrator.

For the option of a fully embedded data pipeline, a direct interface to the acceleration
hardware is required. This may take the form of an FPGA based 'smart interface'. If the
pipeline is heterogeneous and involves GPUs, a direct data path must be developed for the

data stream using DMA over PCle. This hardware interface technology will be investigated in
Green Flash.
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2.4.2 Data Pipeline to DM Interface Options

This interface carries the DM command data from the data pipeline system to the DM drive
electronics. The data path is different depending on whether the target DM is within the
telescope or is part of one of the instruments:

2.4.2.1 Interface to the telescope and hence to M4

The E-ELT telescope interface module is not yet well defined. The output of the real-time
data pipeline will be in the form of DM commands and data that conforms to the definition of
the telescope interface module. This will be a two-directional interface as feedback from the
telescope systems to the real-time data pipeline will be required.

2.4.2.2 Interface to instrument DMs

Interfaces to different DMs (Alpao, Xinetics, Boston Micromachines, etc) are very specific to
manufacturer and often only CPU, based drivers are available. If an interface is required
directly from the acceleration hardware to the DM, this will require the development of
drivers for that specific technology. One approach that will be investigated is the use of
another FPGA based 'smart interface' that is addressed from the accelerator via PCle and
provides a DM specific interface.

2.4.3 Data Pipeline to soft-realtime system interface options

This 1s a two-directional interface. Telemetry data is published from the real-time data
pipeline to the soft real-time system. Command data is sent to the real-time data pipeline
from the soft real-time system for configuration, calibration, control and optimisation of the
pipeline.

2.4.4 Data pipeline to simulator interface options.

This interface provides a facility to inject simulated data into the real-time data pipeline at
various stages and to receive data from the actual real-time data pipeline into a simulated DM
module. Aspects of this interface may be designed to be identical to the actual data pipeline
interfaces to provide transparency between real and simulated data.

3 Software Architecture

Green Flash will provide a framework that facilitates the implementation of different control
strategies within the data pipeline, different optimisation procedures within the soft real-time
system and different techniques within the simulator. No detail is provided here of any of
these software modules. At this stage, we simply identify the various software sub-systems
and discuss the principles that will underpin the software development.

The factors driving the design approach include:

1. Scalability — the design will be scalable from small to very large systems.
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2. Abstraction - a layered approach is required which abstracts the design logic from the

implementation details such as the middleware used, the specific hardware and the
programming language, etc. This abstraction allows all of the software to be highly
portable.

3.1 Software systems/sub-systems

The software will consist of a number of modules that combine to provide the relevant
system or sub-system. These are summarised in the following sections.

3.1.1

3.1.2

3.1.3

Data pipeline software.

The data pipeline software is the core of the AO system. However, it actually
represents only a small fraction of the overall software required. Considerable
experience in the design of real-time AO code exists at both LESIA and Durham. The
software used for Green Flash, to compare and contrast the different hardware
options, will draw on this experience and on this code base. One critical aspect will be
the choice of low latency middleware for transporting the data through the various
stages of the data pipeline. The existing Durham AO Real-time Controller (DARC)
makes use of shared memory whereas SPARTA uses a low latency switch fabric. For
an accelerated architecture, very similar code can be ported to the different accelerator
hardware. For an FPGA based deterministic system, much of the code will be
generated using Quickplay combined with other high level development tools.

Real-time simulator software

Several codes already exist within the Green Flash collaboration for end-to-end
simulation of an AO system at ELT scales. The challenge is to modify one of these
simulations to increase its speed to close to the frame rates of the actual data pipeline.
The second is to design and implement an interface for the transfer of simulated data
to the data pipeline and visa versa. The first stage of this work will be the definition of
the interface. This will be done in the first instance with relatively slow existing
simulation code in order to demonstrate the concept. Some work on on interfacing
simulation code to a real-time data pipeline has already been done at both LESIA and
Durham. Green Flash will build on this work to produce a full interface definition.

The process of speeding up simulations using hardware acceleration has also started.
This work-package will investigate the same acceleration hardware discussed for the
data-pipeline in section 2.1.1. As for the data pipeline, a hybrid of technologies may
be used. Thus abstraction of the software will be a critical factor. Existing software
has been written either in C or using CUDA when GPU hardware is targetted.

The final simulation software will be based on an accelerated version of the code from
the COMPASS collaboration modified for compatibility with the Green Flash data
interface.

Soft real-time software.
The soft real-time system is essentially an HPC system designed for the fast
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processing and analysis of a large amount of data. This code is likely to be developed
mainly in C with specialist accelerator modules where required. The development of
the supervisor software that forms the heart of the soft real-time system is the subject
of a major Green Flash work-package and is described in detail in AD09.

3.2 Ecosystem

The ecosystem is made up of software development tools, commercial and open source
software libraries and code provided from external projects such as the ESO RTC system
SPARTA, the Durham DARC system and the COMPASS software set. In addition, the
transport of data throughout the system requires the evaluation, selection and integration of
middleware.

3.21 FPGA Development environment

One of the major stumbling blocks for the use of FPGA technology is the slow development
cycle for producing the 'IP cores' as FPGA firmware is known. However the tools for FPGA
development have undergone very rapid evolution recently. Green Flash will wherever
appropriate make use of the Quickplay tool being developed by PLDA. A brief introduction
to this tool and to our approach to programming FPGAs is given in section 2.1.1.3.

3.2.2 Middleware

Communication between modules, sub-systems and systems will be achieved by carrying
data over some fast data fabric such as 10G Ethernet using middleware. More than one
middleware may be used in the system depending on the context. For example the telemetry
system may use the data distribution service (DDS) or a similar commercial middleware
application. However, within the data pipeline, minimum complexity and overhead is
required. Since this is essentially point-to-point transport between functional modules of the
pipeline, complex middleware is not required and so a simple high bandwidth low-latency
option is preferred, such as shared memory, OpenMPI or simple UDP sockets.

As with all of the system software, the middleware will be abstracted both from the hardware
and from the software that is the source and destination of the relevant data. In this way, any
middleware selected can be easily superseded by an alternative when required.

The middleware testing and down selection is the responsibility of Durham and a part of the
ecosystem work-package.

3.2.3 Algorithms and Libraries

Wherever possible Green Flash will make use of standard software libraries. This will allow
us to take full advantage of the ongoing developments of such software, in particular the
efficiency of these commercial packages in the utilisation of parallel processing architectures.
Such mathematical libraries are now available that support CPU, GPU, MIC and even FPGA
hardware. Whilst it is possible that alternative software developed in-house might provide
higher efficiency for the specific application, shifting the burden of development (and thus
risk) onto a product being developed elsewhere is a huge advantage. This principle will
extend across all aspects of the Green Flash system. There is a sub-work-package for the
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selection of appropriate libraries as a standard within Green Flash.

3.2.4 Re-use of existing RTC code - SPARTA

There is a substantial base of RTC code within the European AO community that can provide
a starting point for much of the Green Flash software. As an example, the DARC system that
operates both the CANARY AO on-sky demonstrator and the Durham DRAGON AO
laboratory test bench has demonstrated powerful techniques for low latency data pipelining
and the use of shared memory. Many of the techniques used within DARC are directly
relevant for Green Flash and the full code is available to the collaboration.

One particular set of AO software that can make a substantial contribution to Green Flash is
the soft real-time software developed by ESO for SPARTA. This code is written in C and
meets all of the supervisor requirements for the existing VLT SPHERE instrument. This
software can provide the ideal starting point for the Green Flash supervisor either to indicate
a working design or, with the cooperation of ESO, for the actual re-use of much of the code.
Since the RTC prototype that will be developed by Green Flash is targeted at the E-ELT,
compatibility with the existing ESO VLT systems such as SPARTA at some level will be very
beneficial. This concept is a part of the ecosystem work-package and will be investigated
with ESO.

3.3 Software design principles

All software modules that make up the various systems and sub-systems should conform to
standard design principles. So far as is practical, each module should contain:

* Core Logic - the core functionality of the module. This may itself be decomposed into
a number of functional components

* A publish / subscribe interface (Telemetry)

e A command and control interface

3.4 Software Interfaces

Flexibility in the design concept is achieved through the use of well-defined and abstracted
interfaces between components of a software module. External interfaces to modules are
middleware dependent, and are implemented by middleware-specific components. The
internal interfaces within a module are independent of the middleware.

Apart from the data pipeline itself, all interfaces throughout the system will implement a
middleware-independent publish/subscribe interface via which a module may publish or
subscribe to named data. A publisher or subscriber component is required for each named
data entity (topic in DDS) which the module publishes or reads. The interface between the
core logic and the publishers/subscribers must be independent of the middleware.

The details of the interface to the telescope control system are note yet defined. This
illustrates the need for minimal coupling between such interfaces and the RTC core software
in order for design and development of this software to proceed without the risk of extensive
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rework when the interface becomes fully defined.

4 System integration and test

At the end of year 2 of the project, all of the separate options and prototypes described in this
document should have been individually tested at the different institutions. At this point the
down-selections will be made based on the results obtained and a decision will be made on
the design for the final prototype system. The integration and test plan will be defined based
on these down-selections and a full architectural design will be produced.

At this point we will enter a system integration and test phase. All of the relevant hardware
and software will be integrated in Durham, making use of the laboratories there and some of
the AO test bench elements such as wavefront sensor cameras, guide star emulators and
deformable mirrors.

The integration and test work package (WPS) is the responsibility of Durham. System
verification however will be the responsibility of Paris who will provide a verification plan
and the final performance report



