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Acronyms and abbreviations

AD Applicable Document
AO Adaptive Optics
CANARY Durham/LESIA on-sky AO demonstrator
CPU Central Processing Unit
CUDA NVIDIA GPU based software development language
DARC Durham AO Real-time Controller
DDS Data Distribution Service
DM Deformable Mirror
DRAGON Durham laboratory-based AO demonstrator bench
ELT Extremely Large Telescope
E-ELT European ELT
ESO European Souther Observatory
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit
GUI Graphical User Interface
HLS High Level Synthesis
HPC High Performance Computing
MIC Many Integrated Core
MVM Matrix-Vector Multiplication
NIC Network Interface Controller
PCIe Peripheral Component Interconnect express
RD Reference Document
RTC Real-Time Control
RTL Register Transfer Level
SIMD Single Instruction Multiple Data
SPARTA ESO VLT AO Real-time Control System
SHERE VLT Planet finder instrument
UDP User Datagram Protocol
UK ATC United Kingdom Astronomical Technology Centre
VLT Very Large Telescope
WFS Wave-Front Sensor
WP Work Package
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These are the Green Flash PDR documents. 
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1 Scope
This document specifies the top level architecture for both the software and hardware of
GreenFlash.

As the project objective is to find an optimum design for a prototype system, this architecture
will  evolve  significantly  during  the  course  of  the  project.  This  document  therefore  only
specifies the high level systems, sub-systems and some modules of the design and indicates
how they may be interconnected. It defines the hardware and software options that will be
investigated leading to the down-selection for the final prototype system.

2 Hardware Architecture
The starting point for the overall hardware architecture is the existing distributed design used
for SPARTA. The overall design consists of 3 systems:

• Hard real-time data pipeline

• Soft real-time system

• Simulator system

The hard real-time data pipeline must meet the requirements for high throughput, low latency
and low jitter (high determinacy). It  takes as input pixel data from multiple cameras and
provides as output the drive data for multiple deformable mirrors.

The soft real-time system provides an HPC facility for the configuration, calibration, control
and optimisation of the hard real-time pipeline.

The  simulator  system provides  accurate  simulation  at  real-time  frame  rates  of  hardware
components in their absence, such as WFS cameras and deformable mirrors.

The top level system engineering diagram for the full system is shown in a very generalised
form in Figure 1.
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2.1 Real-time Data Pipeline System
This is the low latency, low jitter data pipeline. The system consists of four separate sub-
systems that  will  likely run on the same computer hardware (e.g.  to provide low latency
shared memory middleware) or could be distributed to multiple hardware systems via data
switches. The sub-systems are:

• Pixel Calibration

• Centroiding

• Wave-front reconstruction

• DM controller

The down-selection of hardware for the real-time data pipeline is a part of the project and
several different hardware options will be tested. These include: Field Programmable Gate
Arrays (FPGA), Graphics Processing Units (GPU), Many Integrated Core processors (MIC)
and conventional CPUs. There are two possible configurations for the data pipeline:

Figure 1: Top Level System Engineering Diagram.
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1. A CPU host that is a part of the pipeline with hardware accelerators likely accessed
over PCIe

2. A fully embedded system with data input and output directly to/from the pipeline
hardware with the host CPU system not a part of the pipeline

These two configurations are shown in cartoon form in Figure 2 and both configurations will
be investigated. In both cases, there are various options for the embedded or acceleration
hardware and for its configuration.

The hardware that will be tested must be highly parallel and  provide sufficient numbers of
concurrent  processing  units/coprocessors  operating  in  parallel  to  meet  the  system
requirements. The hardware and configuration options that will be tested are outlined below:

2.1.1 Accelerator Hardware Options
The  pixel  calibration,  centroiding  and  wave-front  reconstruction  by  matrix-vector-
multiplication (MVM) are all highly parallelizable processes. For a large system, they can be
performed much faster (compared to the CPU) on hardware that is designed specifically for
parallelizable algorithms. We refer to this hardware as “accelerators”. In this architecture,
computationally intensive tasks are offloaded to accelerators.

The accelerators to be investigates are GPUs, MICs (Xeon Phi)  and FPGAs. Whilst all of
these technologies can provide parallel processing, the architectures are significantly different
with  advantages  and  disadvantages  for  this  application.  The  FPGAs  bring  an  additional
advantage in providing determinacy, reducing the resultant jitter to close to zero.

Separate  prototype systems will  be constructed to demonstrate  the relative capabilities of
each accelerator. The functionality of each system will be the same.

In the following we briefly describe the specifics of each accelerator. In sections 2.1.2 - 2.1.4

Figure 2: Alternative data pipeline hardware configurations. The
arrows represent the flow of data.
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we then discuss different architectural options for the use of these accelerators.

2.1.1.1 GPU accelerators
GPUs  provide  massively  parallel  systems  (100s  to  1000s  of  processing  units)  that  are
specifically designed for applying single instructions to multiple data in parallel (SIMD). As
such they are  very  powerful  technology for  performing the  sort  of  linear  algebra  that  is
required in an AO RTC. This technology will be investigated as a candidate in all three of the
main Green Flash systems: Data Pipeline, Soft Real-time and Simulator. The investigation of
distributed GPUs for real-time HPC is a major work-package in Green Flash and is described
in detail in RD05.

2.1.1.2 Xeon Phi accelerators
Recent years have seen the emergence of Many Integrated Core processors as a competing
hardware acceleration technology to GPUs. The most common example is  the Xeon Phi.
These devices sacrifice some of the complex functionality of the multiple cores found in
standard CPUs in order to provide up to 60 (in current devices) cores on a single chip. The
devices are currently packaged in a similar format to GPUs, on an extension card accessed
over PCIe with correspondingly high data transfer rates. Unlike a GPU however, they can act
as stand-alone devices with all of the application code running on them rather than partially
on a host CPU system. The road-map for these devices may see them used as the standard
processor on computer server mother-boards.

The advantages of the Phi over GPUs are:

1. They are programmed in C with some extensions to support their large scale parallel
nature. Thus code written by application programmers in C can be readily ported to
these devices. There is no specialist development language, such as Nvidia CUDA for
GPUs, that must be learnt by the programmer. The development cycle is thus very
fast.

2. Whilst the many cores can be applied in a SIMD configuration as is done with GPUs,
there is the option for sub-sets of the cores to perform separate and independent tasks.
This provides an additional flexibility that is absent from GPUs.

A Green Flash work-package will  draw comparisons in the performance of these devices
against  that  provided  by  GPUs  (and  indeed  FPGAs).  Just  as  in  CPU  devices,  they  are
susceptible to system jitter albeit at a lower level. 

Initial  investigations  of  the  performance  of  these  devices  has  already  started  at  CfAI  in
Durham (in collaboration with the UK ATC) with encouraging results. A full prototype RTC
with MIC acceleration will be tested using existing devices and can be expanded to include
the stand-alone  version (Knight's Landing) that is expected to emerge during 2016.
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2.1.1.3 FPGA accelerators
Whilst FPGAs accelerators are an option for the data pipeline, the advantages in determinacy
(low  system  jitter)  that  they  provide  are  more  likely  to  be  employed  in  an  embedded
configuration than as an accelerator. This embedded FPGA data pipeline option is described
in AD06. FPGAs also represent an attractive option for interfacing both between the various
systems and modules and to/from external WFSs and DMs.  This 'smart interconnect' concept
is described in AD07.

However,  new FPGA development tools,  and particularly the PLDA Quickplay tool,  also
make FPGA accelerators an attractive option for algorithm acceleration in the soft real-time
optimiser sub-system and as a part of the real-time simulator system and these options will be
investigated.  A  brief  introduction  to  FPGAs  and  the  tools  now  available  for  their
programming is given here:

FPGA Background
The modern FPGA has developed far beyond a cluster of programmable gates. It normally
integrates with high end digital components, such as multi-gigabit transceivers, high speed
memory  interface,  the  latest  I/O  interfaces  and  controllers  (e.g.  PCIe),  embedded  DSP
processing units (hardware multiplier), embedded memory blocks etc. All these make FPGA
a flexible yet powerful digital processing solution especially for those parallel tasks with hard
real-time requirements. However, programming of FPGA can be a slow and costly procedure.
This is partially due to the customized logic and the parallel complexity of the system where
timing  always  plays  a  vital  role.  Moreover,  the  tools  addressing  FPGA development  are
traditionally focused at the RTL level (Verilog or VHDL), which has analogies to assembler
and lacks the development efficiency of high level compilers. 

Debugging FPGA logic is another lengthy and frustrating process. Simulation is often used
by the engineers to verify the design logic. There are usually two kinds of such simulation:
functional  simulation and timing simulation.  The functional  simulation is  to  test  that  the
designed FPGA logic works to the required specification. The timing simulation tests that the
physical speed of the FPGA can be achieved. Luckily timing tools are provided by the FPGA
vendors. In most designs, timing is statically analysed and a logic analyser can be used to test
the FPGA logic in real-time. 

All  of  this  complexity  is  gradually  being abstracted  from the  programmer  by high level
development  tools.  The evaluation and use of  these  tools  is  critical  to  the use of  FPGA
technology in Green Flash.

FPGA programming Methodology
Nowadays  there  several  different  approaches  to FPGA development.  These are  identified
here. As with any technology, each option has its own features and limitations. Green Flash
will identify and verify the best options to use for higher level FPGA development to improve
productivity.  Although  all  of  these  methods  may  have  a  role  to  play,  the  project  will
concentrate mainly on demonstrating the efficacy of the PLDA Quickplay tool. 

1. Register-Transfer Level (RTL)
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The use of  the  traditional  RTL based design method should not  been overlooked.
Whilst it does not provide the powerful development environment that we require, it
can be very useful in interfacing standard IP cores very efficiently and can play a role
in even where higher level methodologies dominate.

2. High Level Synthesis (HLS)

The claim for HLS is that the FPGA can be programmed with a popular programming
language, normally a limited version of C. Xilinx Vivado HLS is one such option.
Whilst this is a powerful technique, it does not provide the full abstraction that allows
the  non-specialist  to  easily  produce  FPGA code.  The  PLDA tool  Quickplay  (see
below)  builds  on  top  of  HLS.  It  thus  takes  the  final  step  to  providing  an  easy
development  methodology.  It  is  this  highest  level  of  abstraction  that  will  be
investigated by Green Flash.

3. OpenCL

OpenCL  is  an  initiative  to  provide  cross-platform  and  even  cross-architecture
computing  acceleration.  Similar  to  the  Nvidia  GPU  CUDA  architecture,  the
application logic is built as blocks of kernel and is uploaded to the accelerator. The
data  is  provided  in  a  form  of  buffer  and  the  result  is  also  transferred  from  the
accelerator to the host in a buffer. Although the portability of the acceleration is a very
promising feature,  the buffer based data transfer does not match the stream based
architecture of, for example, the pixel stream handing of an AO real-time system.

4. PLDA Quickplay

PLDA  Quickplay  has  the  potential  to  provide  a  fully  abstracted  development
environment for FPGA software. Its architecture is especially well suited to the design
of an AO RTC system. Firstly, it brings up a system architecture based on the Kahn
Process Network (KPN), which connects multiple processing kernels via FIFO based
stream  interfaces.  This  model  matches  the  data  flow  of  an  AO  RTC.  Secondly,
Quickplay provides a HLS system allowing the application model to be described in
C style programming language allowing much of the functionality to be simulated and
debugged  with  readily  available  C tools.  Furthermore,  Quickplay  is  an  integrated
environment. The host system interface and the standard communication interface are
all provided and tested. The developer can concentrate almost entirely on the user
application.  A diagram of  the  QuickPlay  work  flow (from  www.quickplay.io)  is
shown in Figure 3.



Observatoire de Paris

Durham University

Microgate

PLDA

Title: System Architecture

Ref: GF-PDR-04

Version: 1.5

Date: 18 Jan 2016

Authors: Dipper, Younger, 
Bitenc, Geng

Page 12 of 24

Top Level System Architecture

Figure 3: PLDA Quickplay FPGA development methodology

The core of the FPGA application can be built in the C programming language and go
through the familiar test and verification procedure as seen in the left vertical path,
after which the design can go through the HLS and system component integration
(right  vertical  path)  to  automatically  generate  the  FPGA bitstream with  the  same
functionality but with the desired real-time performance and determinism.

Whilst  traditional  FPGA tools  will  be  used  where  required,  most  of  the  FPGA based
acceleration architectures will be targeted with Quickplay

2.1.2 Accelerator Configuration Options
Whichever of the acceleration technologies discussed above is used, there are various options
for how much of the data pipeline is migrated to the accelerator and how much remains in the
CPU. We intend to test the options described in the following sections in order to provide a
clear  understanding  of  the  advantage  of  each  configuration.  The  options  in  this  section
represent the baseline accelerated system with no smart interfaces. Pixel data are captured by
the CPU. Then there are three options:

(a) no acceleration. The full data pipeline is implemented in CPU.

(b) pixel calibration and centroiding are performed on the CPU and centroids are copied to
the accelerator (section 2.1.2.2, Figure 5), or
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(c) pixel data are copied to the accelerator, where then the pixel calibration and centroiding
are performed (section 2.1.2.3, Figure 6).

In (b) and (c), the MVM is performed on the accelerator. This is because, for systems at ELT
scales, the wave-front reconstruction by MVM dominates the computational requirements.  In
both cased the DM commands are copied back to the CPU and sent to the DM.

While the accelerator performs the computations faster, the additional steps of copying the
data to the accelerator and copying the result back to the CPU add to latency: the overall gain
in time is the difference between the speed-up time and the data-copying time. Data copying
may also increase jitter. The object of investigating the use of this accelerated architecture is
to  demonstrate  the  performance  levels  that  can  be  achieved  and  the  advantages  and
disadvantages of this option.

2.1.2.1 CPU-only option
This option, with no hardware acceleration, is included as a baseline for comparison purposes
and is illustrated in Figure 4. The data pipeline will be implemented in C on a top end server
with typically 2 off 6 core processors. The system will be multi-threaded (up to 12 threads or
24 if hyper-threaded). Whilst such systems are common in low order AO systems on 4m and
8m class  telescopes,  the  throughput  will  naturally  be  limited  for  ELT scale  systems and
unable to meet the requirements. However, we will demonstrate what can be achieved with
'pure-CPU-systems'. The maximum frame rates that can be achieved will be measured along
with the jitter. The latter will depend critically on the Linux kernel used. This system will
allow us to demonstrate  what can be achieved using non-real-time and real-time kernels.
These results will demonstrate the sort of acceleration factors that must be achieved with the
accelerated and embedded options.

2.1.2.2 Only MVM on the accelerator
For  a  large  AO  system,  wave-front  reconstruction  by  MVM  takes  about  70%-80%  of
processing time in each cycle. By offloading this task to an accelerator as illustrated in Figure
5, a significant speed-up can be achieved. The amount of data that needs to be copied from

Figure 4: The CPU-only system.



Observatoire de Paris

Durham University

Microgate

PLDA

Title: System Architecture

Ref: GF-PDR-04

Version: 1.5

Date: 18 Jan 2016

Authors: Dipper, Younger, 
Bitenc, Geng

Page 14 of 24

Top Level System Architecture

the CPU to the accelerator on each cycle is small: the centroids copied consist of 2*N floating
point numbers,  where  N is the number of sub-apertures. Hence the acceleration of MVM
easily makes up for the time lost due to the extra data-copying.

2.1.2.3 The whole pipeline on the accelerator
Performing all  the  processing  steps  on the  accelerator  as  illustrated  in  Figure  6,  has  the
advantage of speeding-up also the pixel processing and centroiding which are both highly
parallelizable operations. However, the amount of data to be copied from the CPU to the
accelerator is  much larger with this architescture,  at  least  npix*N floating point  numbers.
Here N is the number of subapertures and npix is the number of pixels in each subaperture,
which  for  a  laser  guide  star  could  be  16*16  or  20*20.  To  have  the  option  of  dynamic
centroiding (where sub-aperture borders are re-defined on the frame-by-frame basis to follow
the movement of the spot), one would need to copy entire frames to the accelerator and the
amount of data would be even larger. This can lead to an increase of latency of a milisecond
or more.

However, we note that the GPUs offer the possibility to perform a significant part of data
copying in parallel to data processing, largely masking the copying time and reducing the
increase in latency.

Figure 5: MVM, which is the most computationally demanding part of the data
processing pipeline, is processed by the accelerator.
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2.1.3 Accelerated System with Smart WFS Interface
This architecture is illustrated in Figure 7 and represents one step towards a fully embedded
data pipeline by introducing a smart WFS interface. The pixel data are copied directly to the
accelerator where they are processed. The DM commands are still copied to the CPU and sent
to  the  DM.  Note  the  accelerator  could  be  a  hybrid  with,  for  example,  pixel  processing
implemented in a FPGA and consequently MVM performed on a GPU.

Figure 6: All the data processing happens on the accelerator and the CPU is
used to interface the camera and the DM.
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Capturing the pixel data from the camera directly to the accelerator, by-passing the CPU has
a big advantage of reducing both latency and jitter. The 'smart interface' can be provided by
FPGA based technology in which some element of also pre-processing can be implemented.
Leaving  the  DM  interface  CPU  based  and  un-changed  will  allow  us  to  investigate  the
advantage to be obtained in throughput and jitter from this intelligent WFS to accelerator
interface alone.

2.1.4 Fully Embedded Data Pipeline
Adding a second interface directly from the accelerators to the DM results in what we refer to
as a 'fully embedded' data pipeline where the CPU host is responsible only for configuration
and control issues. This option represents the embedded data flow configuration of Figure 2. 

As in 2.1.3, the pixel data flows directly into the accelerator from the WFSs, but now also the
DM is controlled by the accelerator, avoiding the CPU completely. As illustrated in Figure 8,
the CPU is used for configuration only further reducing both latency and jitter. However,
controlling  a  DM directly  from an accelerator  would  require  development  of  specialised
software and hardware, most likely in close collaboration with the manufacturer of the DM
used. 

The investigation of a fully embedded data pipeline, possibly including a hybrid of FPGA and
GPU technology, is a major work package within Green Flash. The development of an FPGA
based micro-server will be investigated by Microgate (see AD06) and the use of multiple
distributed GPUs by LESIA (see AD05).

Figure 7: Pixel data are captured directly by the accelerator, by-passing the
CPU.
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2.2 Soft Real-time System
The soft real-time system is responsible for the configuration, calibration, control and
optimisation  of  the  hard  real-time  pipeline.  Many  of  the  algorithms  required  will
require  substantial  computational  power.  This  power  is  likely  to  be  provided  by
technology similar to that used for the data pipeline. The configuration will likely be
an accelerator data flow where a cpu host offloads large tasks to accelerator hardware.

The  hardware  requirements  of  the  soft  real-time  system  are  defined  by  the
functionality that can be seen in Figure 1:

1. The supervisor – This sub-system contains the primary functionality of the soft
real-time system and is responsible for the configuration and optimisation of
the AO data pipeline. The software makes use of data pipeline telemetry and
external  data  (such  as  from  turbulence  profilers)  to  update  the  pipeline
parameters including the control matrix. The principal requirement is therefore
for an HPC system that is capable of performing the required calculations and
updating  the  data  pipeline  on  a  timescale  consistent  with  the  changing
atmospheric and telescope conditions. Since simulations have shown that such
updates  may  be  required  by  ELT scale  systems  as  frequently  as  every  10
seconds, the HPC system will require acceleration hardware. The candidates
for the hardware to provide the required acceleration are the same as those for
the data pipeline (GPU, FPGA, MIC). The tools and techniques that are used

Figure 8: A fully embedded pipeline: the data by-passes the CPU completely.
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will thus be common to the development of both systems (and indeed to the
simulator). The supervisor is a major work-package within Green Flash and is
described in AD09.

2. Telemetry handling – All of the AO data generated by the data pipeline must be
transferred to the telemetry system and made available to the supervisor and to
the user interface as well as being stored. This is not a processing intensive
application but requires hardware and middleware capable of dealing with very
large  data  streams.  It  is  highly  likely  that  the  data  transport  fabric  will  be
Ethernet  and  suitable  NIC  devices  will  be  investigated  along  with  the
associated  switches.  As  is  true  throughout  the  RTC system,  the  concept  of
'smart interfaces' will be applied to this data handling problem.

3. The data pipeline controller is responsible for sequencing and synchronising
the pipeline. It handles all of the parameter updates whatever their source (user
interface or supervisor). It has no requirements for processing or data handling
outside of what can be provided by applications running on a standard CPU
server.

2.3 Simulator System
The proposed simulator system is a development that has not been a feature of previous AO
RTC systems. The top level requirement is to simulate elements of the AO system that are
physically absent. This includes simulation of:

• Camera pixel data

• Wave-front sensors

• Deformable mirrrors

• The atmosphere (phase screens)

2.3.1 Simulator hardware options
Pixel data simulation allows cameras to be tested that are not present or may not yet exist!
The data stream must be deterministic to correctly represent a camera pixel stream. This
module is thus a prime candidate for FPGA technology. Pixel simulation will enable the exact
latency and jitter of the RTC to be measure. An electronic signal can be fed back from various
stages of the RTC to the simulator. This ability to measure system latency and jitter will be
critical to determining the exact performance of both the data pipeline and the simulator in
Green Flash.

The other modules will be simulated using the same or similar technology to that employed
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for both the data pipeline and the soft real-time system. It will be possible to run the data
pipeline  with  none,  one  or  several  aspects  in  simulation.  Existing  AO  simulation  code
generally runs at much slower than real-time rates. Such code can be accelerated to close to
the target rates of the data pipe-line using accelerator technology. 

Since there is no president yet for such a system, Green Flash will investigate whether the
simulator system should be in the form of a separate data pipeline linked to the primary
pipeline or whether some form of CPU hosted and accelerated design can be employed.

2.3.2 Simulator to data pipeline interface
The pixel simulator  will  provide data to the pipeline via the same interface as real WFS
camera. However, the form of the interface for data from the simulated WFS into the data
pipeline and similarly for reconstructed data from the pipeline to a simulated DM will need to
be  defined.  This  problem is  the  subject  of  a  work-package  within  Green  Flash.  System
interfaces are described briefly in section 2.4 and are listed in AD08.

2.4 Data Pipeline Interfaces
The data pipeline has four interfaces and various options will be investigated for each.
A detailed  list  and  description  of  these  interfaces  is  provided  in  AD08.  A brief
summary is given here:

2.4.1 Data Pipeline to WFS Interface Options
This interface carries the WFS camera pixel data from the camera (or camera simulator) to
the pixel handling module. Whilst the pixel handling module is a part of the real-time data
pipeline, all or part of the pixel handling may be implemented as a part of a 'smart interface'
using FPGA technology. This interface may be located close to or remote from the actual
cameras. 

It is highly likely that the data transport for WFS camera data will be Ethernet and this will be
the standard adopted by Green Flash. Legacy camera protocols such as Camera Link can be
easily  converted  to  Ethernet  by commercial  hardware and software  so that  existing non-
Ethernet cameras can be used for testing when required.

Many commercial cameras use frame grabber hardware for this interface. This is not suitable
for  an AO RTC since it  adds  to  the  overall  latency of  the system.  Camera  data  will  be
processed as the stream of pixels arrive. Thus the pixel processing is performed in parallel
with the camera readout. This technique was used both in SPARTA and in the CANARY on-
sky AO demonstrator.

For  the  option  of  a  fully  embedded  data  pipeline,  a  direct  interface  to  the  acceleration
hardware is  required.  This  may take the form of an FPGA based 'smart  interface'.  If  the
pipeline is heterogeneous and involves GPUs, a direct data path must be developed for the
data stream using DMA over PCIe. This hardware interface technology will be investigated in
Green Flash.
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2.4.2 Data Pipeline to DM Interface Options
This interface carries the DM command data from the data pipeline system to the DM drive
electronics.  The data  path is  different  depending on whether  the target  DM is within the
telescope or is part of one of the instruments:

2.4.2.1 Interface to the telescope and hence to M4
The E-ELT telescope interface module is not yet well defined. The output of the real-time
data pipeline will be in the form of DM commands and data that conforms to the definition of
the telescope interface module. This will be a two-directional interface as feedback from the
telescope systems to the real-time data pipeline will be required.

2.4.2.2 Interface to instrument DMs
Interfaces to different DMs (Alpao, Xinetics, Boston Micromachines, etc) are very specific to
manufacturer and often only CPU, based drivers are available. If an interface is required
directly  from the acceleration  hardware to  the  DM, this  will  require  the  development  of
drivers for that  specific  technology.  One approach that  will  be investigated is  the use of
another FPGA based 'smart interface' that is addressed from the accelerator via PCIe and
provides a DM specific interface. 

2.4.3 Data Pipeline to soft-realtime system interface options
This  is  a  two-directional  interface.  Telemetry  data  is  published  from  the  real-time  data
pipeline to the soft real-time system. Command data is sent to the real-time data pipeline
from the soft real-time system for configuration, calibration, control and optimisation of the
pipeline.

2.4.4 Data pipeline to simulator interface options.
This interface provides a facility to inject simulated data into the real-time data pipeline at
various stages and to receive data from the actual real-time data pipeline into a simulated DM
module. Aspects of this interface may be designed to be identical to the actual data pipeline
interfaces to provide transparency between real and simulated data.

3 Software Architecture
Green Flash will provide a framework that facilitates the implementation of different control
strategies within the data pipeline, different optimisation procedures within the soft real-time
system and different techniques within the simulator. No detail is provided here of any of
these software modules. At this stage, we simply identify the various software sub-systems
and discuss the principles that will underpin the software development.

The factors driving the design approach include:

1. Scalability – the design will be scalable from small to very large systems.
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2. Abstraction - a layered approach is required which abstracts the design logic from the
implementation details such as the middleware used, the specific hardware and the
programming language, etc. This abstraction allows all of the software to be highly
portable.

3.1 Software systems/sub-systems
The software  will  consist  of  a  number  of  modules  that  combine  to  provide  the  relevant
system or sub-system. These are summarised in the following sections.

3.1.1 Data pipeline software.
The  data  pipeline  software  is  the  core  of  the  AO  system.  However,  it  actually
represents  only  a  small  fraction  of  the  overall  software  required.  Considerable
experience in the design of real-time AO code exists at both LESIA and Durham. The
software  used  for  Green  Flash,  to  compare  and  contrast  the  different  hardware
options, will draw on this experience and on this code base. One critical aspect will be
the choice of low latency middleware for transporting the data through the various
stages of the data pipeline. The existing Durham AO Real-time Controller (DARC)
makes use of shared memory whereas SPARTA uses a low latency switch fabric. For
an accelerated architecture, very similar code can be ported to the different accelerator
hardware.  For  an  FPGA based  deterministic  system,  much  of  the  code  will  be
generated using Quickplay combined with other high level development tools.

3.1.2 Real-time simulator software
Several  codes  already  exist  within  the  Green  Flash  collaboration  for  end-to-end
simulation of an AO system at ELT scales. The challenge is to modify one of these
simulations to increase its speed to close to the frame rates of the actual data pipeline.
The second is to design and implement an interface for the transfer of simulated data
to the data pipeline and visa versa. The first stage of this work will be the definition of
the interface.  This  will  be  done in  the first  instance  with  relatively  slow existing
simulation code in order to demonstrate the concept. Some work on on interfacing
simulation code to a real-time data pipeline has already been done at both LESIA and
Durham. Green Flash will build on this work to produce a full interface definition.

The process of speeding up simulations using hardware acceleration has also started.
This work-package will investigate the same acceleration hardware discussed for the
data-pipeline in section 2.1.1. As for the data pipeline, a hybrid of technologies may
be used. Thus abstraction of the software will  be a critical factor. Existing software
has been written either in C or using CUDA when GPU hardware is targetted.

The final simulation software will be based on an accelerated version of the code from
the COMPASS collaboration modified for compatibility with the Green Flash data
interface. 

3.1.3 Soft real-time software.
The  soft  real-time  system  is  essentially  an  HPC  system  designed  for  the  fast
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processing and analysis of a large amount of data. This code is likely to be developed
mainly in C with specialist accelerator modules where required. The development of
the supervisor software that forms the heart of the soft real-time system is the subject
of a major Green Flash work-package and is described in detail in AD09.

3.2 Ecosystem
The  ecosystem is  made  up  of  software  development  tools,  commercial  and  open  source
software libraries and code provided from external projects such as the ESO RTC system
SPARTA,  the  Durham  DARC  system  and  the  COMPASS  software  set.  In  addition,  the
transport of data throughout the system requires the evaluation, selection and integration of
middleware.

3.2.1 FPGA Development environment
One of the major stumbling blocks for the use of FPGA technology is the slow development
cycle for producing the 'IP cores' as FPGA firmware is known. However the tools for FPGA
development  have  undergone  very  rapid  evolution  recently.  Green  Flash  will  wherever
appropriate make use of the Quickplay tool being developed by PLDA. A brief introduction
to this tool and to our approach to programming FPGAs is given in section 2.1.1.3.

3.2.2 Middleware
Communication between modules,  sub-systems and systems will  be achieved by carrying
data  over  some fast  data  fabric  such as  10G Ethernet  using middleware.  More than one
middleware may be used in the system depending on the context. For example the telemetry
system may use the data distribution service (DDS) or a similar commercial  middleware
application.  However,  within  the  data  pipeline,  minimum  complexity  and  overhead  is
required. Since this is essentially point-to-point transport between functional modules of the
pipeline, complex middleware is not required and so a simple high bandwidth low-latency
option is preferred, such as shared memory, OpenMPI or simple UDP sockets.

As with all of the system software, the middleware will be abstracted both from the hardware
and from the software that is the source and destination of the relevant data. In this way, any
middleware selected can be easily superseded by an alternative when required.

The middleware testing and down selection is the responsibility of Durham and a part of the
ecosystem work-package.

3.2.3 Algorithms and Libraries
Wherever possible Green Flash will make use of standard software libraries. This will allow
us to take full advantage of the ongoing developments of such software, in particular the
efficiency of these commercial packages in the utilisation of parallel processing architectures.
Such mathematical libraries are now available that support CPU, GPU, MIC and even FPGA
hardware. Whilst it is possible that alternative software developed in-house might provide
higher efficiency for the specific application, shifting the burden of development (and thus
risk)  onto a  product  being developed elsewhere  is  a  huge advantage.  This  principle  will
extend across all aspects of the Green Flash system. There is a sub-work-package for the



Observatoire de Paris

Durham University

Microgate

PLDA

Title: System Architecture

Ref: GF-PDR-04

Version: 1.5

Date: 18 Jan 2016

Authors: Dipper, Younger, 
Bitenc, Geng

Page 23 of 24

Top Level System Architecture

selection of appropriate libraries as a standard within Green Flash. 

3.2.4 Re-use of existing RTC code - SPARTA
There is a substantial base of RTC code within the European AO community that can provide
a starting point for much of the Green Flash software. As an example, the DARC system that
operates  both  the  CANARY AO  on-sky  demonstrator  and  the  Durham  DRAGON  AO
laboratory test bench has demonstrated powerful techniques for low latency data pipelining
and  the  use  of  shared  memory.  Many of  the  techniques  used  within  DARC are  directly
relevant for Green Flash and the full code is available to the collaboration.

One particular set of AO software that can make a substantial contribution to Green Flash is
the soft real-time software developed by ESO for SPARTA. This code is written in C and
meets  all  of  the supervisor  requirements  for  the  existing VLT SPHERE instrument.  This
software can provide the ideal starting point for the Green Flash supervisor either to indicate
a working design or, with the cooperation of ESO, for the actual re-use of much of the code.
Since the RTC prototype that will be developed by Green Flash is targeted at the E-ELT,
compatibility with the existing ESO VLT systems such as SPARTA at some level will be very
beneficial. This concept is a part of the ecosystem work-package and will be investigated
with ESO.

3.3 Software design principles
All software modules that make up the various systems and sub-systems should conform to
standard design principles. So far as is practical, each module should contain:

• Core Logic - the core functionality of the module. This may itself be decomposed into
a number of functional components

• A publish / subscribe interface (Telemetry) 

• A command and control interface

3.4 Software Interfaces
Flexibility in the design concept is achieved through the use of well-defined and abstracted
interfaces  between components  of  a  software module.  External  interfaces to  modules  are
middleware  dependent,  and  are  implemented  by  middleware-specific  components.  The
internal interfaces within a module are independent of the middleware.

Apart from the data pipeline itself,  all  interfaces throughout the system will implement a
middleware-independent  publish/subscribe  interface  via  which  a  module  may  publish  or
subscribe to named data. A publisher or subscriber component is required for each named
data entity (topic in DDS) which the module publishes or reads. The interface between the
core logic and the publishers/subscribers must be independent of the middleware.

The  details  of  the  interface  to  the  telescope  control  system  are  note  yet  defined.  This
illustrates the need for minimal coupling between such interfaces and the RTC core software
in order for design and development of this software to proceed without the risk of extensive



Observatoire de Paris

Durham University

Microgate

PLDA

Title: System Architecture

Ref: GF-PDR-04

Version: 1.5

Date: 18 Jan 2016

Authors: Dipper, Younger, 
Bitenc, Geng

Page 24 of 24

Top Level System Architecture

rework when the interface becomes fully defined.

4 System integration and test
At the end of year 2 of the project, all of the separate options and prototypes described in this
document should have been individually tested at the different institutions. At this point the
down-selections will be made based on the results obtained and a decision will be made on
the design for the final prototype system. The integration and test plan will be defined based
on these down-selections and a full architectural design will be produced.

At this point we will enter a system integration and test phase. All of the relevant hardware
and software will be integrated in Durham, making use of the laboratories there and some of
the AO test  bench elements  such as wavefront  sensor  cameras,  guide star  emulators  and
deformable mirrors.

The  integration  and  test  work  package  (WP8)  is  the  responsibility  of  Durham.  System
verification however will be the responsibility of Paris who will provide a verification plan
and the final performance report


