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Applicable Documents (AD)

These are the Green Flash PDR documents

No. Title Reference Issue Date

AD01 Introduction GF-PDR-01

AD02 Management plan and WP definition GF-PDR-02

AD03 Requirements Specification GF-PDR-03

AD04 System Architecture GF-PDR-04

AD05 Distributed GPUs for real-time HPC GF-PDR-05

AD06 FPGA Solution for hard real-time GF-PDR-06

AD07 Smart Interconnect GF-PDR-07

AD08 Interface Control Document GF-PDR-08

AD09 Supervision Strategy GF-PDR-09

Reference Documents (RD)

These are documents external to the Green Flash project

No. Title Reference Issue Date
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Acronyms and abbreviations

Table 1 Acronyms and Abbreviations

AD Applicable Document

AO Adaptive Optics

CANARY Durham/LESIA on-sky AO demonstrator

CPU Central Processing Unit

CUDA NVIDIA GPU based software development language

DARC Durham AO Real-time Controller

DDS Data Distribution Service

DM Deformable Mirror

DRAGON Durham laboratory-based AO demonstrator bench

ELT Extremely Large Telescope

E-ELT European ELT

ESO European Souther Observatory

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

GUI Graphical User Interface

HLS High Level Synthesis

HPC High Performance Computing

MIC Many Integrated Core

MVM Matrix-Vector Multiplication

NIC Network Interface Controller

PCIe Peripheral Component Interconnect express

RD Reference Document

RTC Real-Time Control

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

SPARTA ESO VLT AO Real-time Control System

SHERE VLT Planet finder instrument

UDP User Datagram Protocol

UK ATC United Kingdom Astronomical Technology Centre

VLT Very Large Telescope

WFS Wave-Front Sensor

WP Work Package
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1 Scope
This document specifies the data-pipeline and the hardware sizing in Green FLASH. 

In the first time, we will explain the tasks to achieve and the performance level we have to reach to 
respect the specifications.

We will cover the computation, the bandwidth and the transfer section and approximate as accurate as 
possible the best sizing for our solution.

2 Computation
In this section, we will describe how to compute a command vector from a  WFS and present our time
and dimension constraints.

2.1 Process
The goal to reach consists to compute the command vector for the DM from the WFS frame.

It works in three successive steps :

1. Pixel calibration (dark subtraction, flat field, background subtraction)

2. Slopes computation (including pupil registering with a bi-cubic interpolation and reference 
slopes subtraction)

3. Commands vector computation

1. Calculate the pseudo-open loop measurement vector the two last command vector and the
interaction matrix.

M⃗ ol [k ]=M⃗ [k ]−D(a c⃗ [k−2]+(1−a) c⃗ [k−1])

2. Then, calculate the raw tomographic vector

e⃗ [k ]=R M⃗ o1[k ]

3. Finally, get the vector command by smoothing the raw vector with the last command

c⃗ [k ]=g e⃗+(1−g) c⃗ [k−1]

During the next chapters, we will focus on the last point (Commands vector computation) as it takes 
most of the computation time 

2.2 Performance
The integrating time of the camera is fixed at 2ms. All the other components are synchronized at this 
frequency. But transfer time also impose some constraints such as the time transferring a frame to the 
RTC.

Luckily, a part of the time during the frame transfer will be used by calculating the last wave front 
which makes the transfer delay constraint much smaller.

We use the remaining time by computing block per block the frame and vector command during the 
transfer. So the time between the arrival of the last block and sending the command need to be enough
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to compute the block.

2.3 Dimension
For our case, all the dimensions and data movement are fixed.

Data dimension Representation Size Movement 
frequency

Throughput

Frame 1.6k x 1.6k Unsigned int 16 5.12 MB Each iteration 21 Gb/s

R, D matrix 80k x 15k float 32 5 GB Each minute 1.3 Gb/s

Command 
vector

15k float 32 60KB Each iteration 240 Mb/s

All the data are updated at different frequencies during the runtime. The frame throughput is by far the
most highest due to its hight frequencies and must be applied for the six different cameras.

The two other types of data are less complex to transfer due to low frequency or lower quantity of 
data.

2.4 Transfer
We have to handle the last frame for each 6 cameras, representing 6 x 5.12 MB (30.72 MB) to transfer
at every iteration. It is by far the biggest transfer performed between RTC and other systems. The 
others two only need ~100MB of bandwidth and are either distributed on many nodes (R, D matrix to 
all nodes) or only send the one system (command vector to the DM controller).

CAMERA

RTC

DM

Integration k+2

k ms k+2 ms

Send

Integration k + 1Integration k

Pol mesurment
computation 

1 2 3 … N

11 2 N…3

Compute part of frame
and vector command

Transfer part
of frame

Maximum time to
compute a block
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The frame transfer will clearly size the communication between node and others systems.

2.5 Execution
At each iteration, the main task consist to perform 2 different vector-matrix multiplications (with R
and D matrix). We can approach the FLOP requirement by count 1 multiplier–accumulator (MAC) or
2 FLOP per matrix's element. So, for the each 2 matrix we have :

2matrix x80,000 x 15,000≈2.5GMAC=5GFLOP

per iteration and 2.5TFLOPs at 500Hz.

3 Reference

3.1 Hardware Reference

3.1.1 Compute performance

Many accelerators exist but GPUs are particularly suitable to the task with their high throughput and 
high bandwidth. We will consider other hardwares  in another time.

Model
Architecture Theoretical peak performance

single precision (TFLOPS)
Memory 
bandwidth (Gb/s)

ECC Energy 
consumption (W)

NVidia 
Tesla K40

Kepler 4.29 2304 Yes 235

NVidia 
Tesla K80

Kepler 8.5 3840 Yes 300

NVidia 
M6000

Maxwell 6.07 2539 No 222

For this case of computation,(io bound problems) the bandwidth are the first performance indicator 
ahead the computing performances. A simple way to calculate the true performance peak and the 
number of GPU needed is to use this simple equation :

CEIL(
CR

~
B xOI

)=N

CR (Gflops) : Computation requirement or the total amount of computation needed for the task : 
~5000 GFlops
~
B (GB/s) : Sustained peak bandwidth, calculate from the theoretical bandwidth and a constant. 

This constant is experimental and may vary with the architecture or with features set like ECC (Error-
Correcting Code).
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K20C K40 K80 M6000

B 1664 2304 1920 (x2) 2539

~
BECCOFF

1400 (84%) 1888 (82%) 1536 (x2, 80%) 1968 (77%)

~
BECCON

1200 (72%) 1664 (72%) 1360 (x2, 70%) NONE

Until the end of the document, we will use the values with ECC memory. The other value was just use
for example and for crossing the estimation with experimental values.

OI or Operation Intensity : Ratio of the number of FLOPs executed to the number of bytes read or 
written to the memory (quantity of non cached memory access), to be relevant, we need to care of the 
size of element (floating point 16, 32 or 64 bits).

N : Number of GPU needed to execute the task.

With 32 bits floating point number :

K20C K40 K80 M600

NECC OFF 29 22 14 21

NECC ON 34 25 15 NONE

With 16 bits floating point number :

K20C K40 K80 M600

NECC OFF 15 11 7 11

NECC ON 17 13 8 NONE

3.1.2 Interconnect technologies

3.1.2.1 Pci-e

The GPUs are all connected with a pci-e gen 3 bus.

Frequency Bandwidth Flux per line Flux per 16 lines

PCI-E 3.x 100 MHz 8 GT/s 984.6 MB/s 126 Gb/s
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The pci-e bus can provide up to 126 Gb/s for each GPU but this value depend mostly by the copy 
engine of the GPU.

For example with K80 GPUs, we can reach ~80 Gb/s of peak bandwidth.

3.1.2.2 10 Gigabit Ethernet

The 10 Gb Ethernet link can provide 1.25 GB/s bandwidth and 40 Gb/s with a 4 links configuration.
The  real  bandwidth depends on  the  protocol  used.  In  practice,  with  optimized configuration,  we
almost reach the theoretical bandwidth.

3.2 Compute Reference

3.2.1 KBLAS

KBLAS and Magma are two Basic Linear Algebra Subprogram (BLAS) Library. They implement on 
different type of hardware linear algebra operations.

Currently, KBLAS achieve the better performance for the matrix vector multiply on multi-GPUs 
topology. It can be a good indicator for the performance we can achieve and verify our expectation on 
other hardwares.

We compare the theoretical result with two experimental tests :

• First was performed by KAUST on 8 K20c GPUs cluster, ECC off and 32 bits floating point 
number.

• The other, in our cluster with 4 k80 GPUs in the same condition.

The KAUST's cluster reach 670 GFLOPs of peak performance. Using the previous equation, we 
obtain 1340 Gb/s of peak bandwidth per GPU.

Our cluster reach 815 GFLOPs of peak performance that gives us 3248 Gb/s (2 x 1624 Gb/s).

These two results show that the equation is quite close to experimental value and provide a good way 
to approximate the total quantity of GPUs for the RTC.

3.3 Solution reference

3.3.1 Sparta

SPARTA is an existing solution to provide a standard platform to build adaptive optics real-time 
computers based on the requirements. It was use on different project like SHERE or AOF.

Instrument AO class WFS # meas. DM # com. Freq. (Hz) Performance (GMAC/s)

SPHERE XAO 1 2.6k 1 1.3k 1500 5.2 

AOF LTAO 4 2.4k 1 1.2k 1000 11.8
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The SPARTA architecture works with different stacks. We will only focus on the RTC box which 
implement a hard real-time low latency adaptive optics control loop.

The computations are handled with both DSPs and CPUs. They have both benefits and drawback.

• DSP are good for floating point operations which required high bandwidth, DSP can be 
programmed with C language and have a much faster cycle development than FPGA-based

• CPU are used for high level algorithm that required more complex hardware

• The SPARTA system is a good architecture but can't provide enough bandwidth (VXS 
backplane is limited at 6.25Gb/s) and compute performance (it is designed for much lower 
project than the E-ELT).
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4 Solution
The Green Flash project starts with a new architecture. It's based on existing strategies (SPARTA) but 
use new features and hardwares.

The Green Flash RTC box solution is a node oriented architecture. Each node is an independent 
system with some GPUs and a host controller to manage the GPUs. Each WFS is linked with the RTC
box by four links 10 Gibabit Ethernet.
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4.1 General architecture

4.1.1 Compute parallelization

In order to fit  the computation in all  the GPUs, we have to parallelize the data respecting some
constraints.

This first constraint comes from the frame repartition. A node receive at each iteration one frame from
one camera. A GPU can only efficiently access the frame of its node. This constraint will lead the rest
of the computation.
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In order to minimize the communication between nodes, all the data interacting with the frame have to
be computed by the same node.

• c1 + c2 = c3

With our strategy, each GPU compute the vector addition. All vectors have 15k elements. The 
addition can be handled in one iteration.

• c3 x D = T

All GPUs of all nodes have the c3 vector, in this case we just have to segment the D matrix in order to
let each GPU computes the part of T vector corresponding to its camera and slopes.

The matrix is perfectly segmented and no data is redundant.

• T + slopes = Mol and Mol x R = e

These calculations are interlaced due to the time needed to obtain the entire frame. But almost all 
computations remain independent except for the vectors reductions introducing a node 
communication. One node need to have e to compute the final command but all nodes need it to for 

D

c3

c2

c1

e

c0

c1

T

C
am

 0
C

am
 1

C
am

 2
...

C
am

 N

RM
ol

N
od

e 
0

N
od

e 
1

N
od

e 
2

…
N

od
e 

N GPU 0
GPU 1
GPU 2

= + = ×

=

=+

+

=×

GPU 0
GPU 1
GPU 2

GPU 0
GPU 1
GPU 2

GPU 0
GPU 1
GPU 2

GPU 0
GPU 1
GPU 2

Pixels
Calibration

+
Slopes

Computation All node
reduction



Observatoire de Paris
Durham University
Microgate
PLDA

Title:
Version:
Status:
Authors:

Page:

Distributed GPUs for real-time HPC
1.0   
Draft
Julien Bernard
Damien Gratadour
15 of 18

Distributed GPUs for real-time HPC

the next iteration (c0 becomes c1 at next iteration).

In the worst case communication, 5 nodes send the vector to the last node. This communication use 
pic-e bus and four links 10 Gb Ethernet but only the 10 Gb Ethernet is a bottleneck. With the 
theoretical bandwidth, we can transfer all data in 60µs or 6% of the iteration time.

Finally the node with the result has to transfer the command to the DM and all nodes in order to start 
the next iteration.

4.2 Hardware architecture
In this section we will simply mention the hardware architecture to specify inter-GPU and inter-node 
bandwidth.

All GPUs on the same node can directly interact using the pci-e bus. The transfer limit depends on the
pci-e bandwidth but mostly on the GPU copy engine (~80Gb/s).

Between GPU on different nodes, we will talk about node communication. This communication use a 
FPGA with a serial interface using four links 10 Gb Ethernet with a theoretical bandwidth of 40 Gb/s.

4.3 Implementation consideration

4.3.1 Precision

For this type of processing, the controllers use mostly floating point numbers encoded in 32 bits 
(IEEE 754). The accuracy achieved by this encoding allows to control a deformable mirror with 
values remaining near 0.
One solution under consideration is to encode the numbers with 16 bits. The benefits are numerous: 
reduction of the required space and bandwidth by 2. On current architectures, the calculation is always
performed with 32 bit numbers.

With our type of problem, where the bandwidth is by far the most important constraint, use 16 bits 
number in place of 32 bit number can reduce by 2 the number of GPUs needed.

Precision Exponent Fraction Min positive Max positive Precision near 0
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(bit) (bit) (bit) value value

32 8 23 1.18 x 10-38 1.7 x 1038
1.4 × 10−45

16 5 10 6.10 x 10-5 65504 5.96 × 10−8

This strategy need more test in order to know if the precision is enough.

4.3.2 Determinism

With a hard real time constraint, we need determinism in order to ensure a 500Hz frequency. In a first 
time, with existent GPU architecture, we need to remove most of the jitter in the compute pipeline. 1

The main jitter in CUDA come from the kernel scheduler using the CPU and introducing many CPU-
GPU communications. But one time a block of a kernel is launched on the GPU, no one can stop it 
until it finishes its work.

A simple solution consists in launching a perpetual kernel which never stop until a command was 
send. However the solution introduces a huge constraint in the implementation, it does not allow the 
use of any existing library. Added to this is the necessity of using the correct number of blocks and 
threads to use 100% of the GPU. All blocks or threads additionally created beyond the GPU limits 
will never launched introducing a bad computation.

Another point is about concurrent accesses. We need to discard most of them and introduce 
deterministic way to perform access. This is handled at the algorithmic level.

5 Future technologies

5.1 NVIDIA Pascal GPU
At this time, the most powerful GPU is the Nvidia K80 that provides the best bandwidth by pci-e port 
and provide all the professional features (ECC, 2 copy engines).

During the current year, NVIDIA will produce a new generation of GPU based on the Pascal 
architecture.

This architecture introduces new features like 16 floating point numbers processing unit and a new 
type of random-access memory that hugely increase the bandwidth. Also, this generation will double 
the number of transistor resulting in a potential good improvement of compute capacity.

Model
Architec
ture

Memory bandwidth
(Gb/s)

Memory 
(GB)

ECC Fp 16 support

NVidia 
Tesla K80

Kepler 3840 (2 x 1920) 24 (2 x 11) Yes No

1 http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1891156

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1891156
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NVidia 
Pascal

Pascal 8000 32 Yes Yes

With what is known at this time, it is hard to calculate the exact need of GPUs based on Pascal 
architecture (unknown sustained peak bandwidth for Pascal) but we approximate the number at 8 for 
computations based on 32 bit floating point number and only 4 for 16 bit floating point number 
computations.

6 Implementation plan
This work is mainly concentrated in WP4 of Green FLASH (see AD02 for a full list of WP), in task
4.1.

Objectives This WP aims at  assessing solutions relying on hardware accelerators in a distributed
memory configuration to address both the RT-box and the supervisor module designs of the AO RTC.
The performance of these solutions, based on GPUs, Intel MIC and FPGA will evaluated in terms of
determinism for the real-box performance and overall throughput for the supervision process. This
WP has  strong ties  with WP5 on smart  interconnects  since in  such distributed configuration,  the
achievable  performance  strongly  depends  on  the  ability  to  enable  low  latency  intranodes
communications. The output of this WP is a series of small scale prototypes relying on these various
accelerator  technologies  on  which  both  RT-box and supervisor  strategies  will  be  evaluated.  This
performance assessment will be used for the down selection of technologies during the final design
review of the AO RTC prototype. 

6.1 Task 4.1: Distributed GPUs for real-time HPC
Objectives. In this  task we propose to investigate  the level  of  performance determinism and the
scalability  of GPU based clusters targeting the E-ELT first light AO RT box specification. This work
relies on previous developments at OdP and UoD on the evaluation of this technology for the AO real-
time control application in a non-distributed configuration, as well as an operational validation on the
telescope. 

The main result of these developments, consistently with other studies on the GPU application to real-
time tasks, is the necessity of implementing a strategy in which the interaction between the GPU and
the host CPU should be minimized (avoided if possible) to ensure low performance jitter. Moreover,
efficient communication strategies must be implemented to ensure minimal overall latency. 

We propose  to  extend  this  study  to  a  distributed  configuration  and  follow  an  energy  efficient
approach, since the role of the host CPU should be minimal, by implementing, as a baseline, a small
scale cluster of up to 8 nodes each hosting an ARM64 processor, several (depending on available
main  boards)  GPUs  and  a  smart  NIC.  The  NIC  will  be  obtained  from  WP6  and  optimized
communication strategies relying on its smart features will be studied in this task.

The  performance  will  be  assessed  on  tailored  MVM cases  with  relevant  data  stream sizes,  and
emphasis will be put on the scheduling process, either through a custom approach developed in this
task or relying on mainstream solutions selected in task 8.3. These two approaches will be compared.
Our goal is to reach 1.5 TMAC/s on the MVM application by the end of the prototyping phase of the
project, with 240 Gb/s of streaming data as an input. The market evolutions will be monitored during
the course of this task, to get performance projections for the final architecture design, with emphasis
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on  the  availabilities  of  various  ARM64  main  board  options  and  more  powerful  GPUs  and  the
consistency with the performance objective. This work includes:

• the HW architecture definition following available main boards and GPUs on the market at
the time of the project start

• the implementation of a prototype of 8 nodes with standard and smart interconnects (for data
acquisition from the simulated sensors) in relation with WP6

• the deployment of a standard RT environment with mainstream libraries to perform the RT-
box tasks in relation with task 8.3

• the implementation of a custom scheduling strategy on the nodes, build on top of the smart
interconnect strategy to optimize performance

• the performance assessment with respect to the scale of the facility in terms of determinism
and energy consumption
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