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Acronyms and abbreviations

Table 1 Acronyms and Abbreviations

AD Applicable Document

AO Adaptive Optics

CANARY Durham/LESIA on-sky AO demonstrator

CPU Central Processing Unit

CUDA NVIDIA GPU based software development language

DARC Durham AO Real-time Controller

DDS Data Distribution Service

DM Deformable Mirror

DRAGON Durham laboratory-based AO demonstrator bench

ELT Extremely Large Telescope

E-ELT European ELT

ESO European Souther Observatory

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

GUI Graphical User Interface

HLS High Level Synthesis

HPC High Performance Computing

MIC Many Integrated Core

MVM Matrix-Vector Multiplication

NIC Network Interface Controller

PCIe Peripheral Component Interconnect express

RD Reference Document

RTC Real-Time Control

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

SPARTA ESO VLT AO Real-time Control System

SHERE VLT Planet finder instrument

UDP User Datagram Protocol

UK ATC United Kingdom Astronomical Technology Centre

VLT Very Large Telescope

WFS Wave-Front Sensor

WP Work Package
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1  Scope
This document specifies the interconnect strategy that will be adopted in Green FLASH.

The first  part  of  this  document  (section 2)  is  some sort  of  white paper  for  the  concept  of  smart
interconnect.  In the second part,  we describe the specification of such interconnect  for the green
FLASH project and an implementation plan.

2 Concept of smart interconnect
Data movements in an AO RTC are complex and involve several data flows of different natures and
properties.  The following figure sketches the high level architecture of an AO RTC.

2.1 Real-time AO Data pipeline
This is the low latency, low jitter data pipeline. The rate of streaming data from the sensors is imposed
by the observing conditions (turbulence speed, brightness of the guide source) and the requirements in
terms of image quality and stability at the output of the telescope. To ensure stable performance, the
overall  latency  of  the  “acquisition  –  processing  –  feedback”  process  has  to  be  minimal  and
deterministic. It fixes the core requirements of the RT box. The latter receives raw data from sensors
through a custom format (to enable fast readout) and performs a first level of reduction (the baseline
being batched-centroiding, i.e. centroiding on many small regions) before transmitting the resulting
smaller data set to the next component of the data processing pipeline: wavefront reconstruction. 

2.2 AO real-time loop optimization
At another level, because they are individually based on distributed architectures to meet the compute
performance requirements, the RT box and the supervisor module both require an optimized internal
interconnect  strategy. Inter-nodes  low latency communication  is  critical  to  the  RT box to ensure
deterministic performance but it is also critical to the supervisor module to ensure best performance.
In such distributed environments enabling direct memory access (DMA) at the intra- and inter-nodes
levels and transfer – compute overlaps are the keys to performance. However, while the RT box and
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supervisor module share the same top level requirement of low latency data transfer, they may not
share the same interconnect implementation which may be hardware / application specific.

Additionally, the interconnection between these two systems is crucial for operations. The RT box
broadcasts telemetry data to the supervisor which processes them through a statistical analysis to
compute an updated wavefront reconstructor control matrix which is uploaded to the RT box. Given
the size of the control matrix (typically 64 Gbytes) at the scale of the E-ELT, the process of providing
regular updates without impacting the AO loop is also a challenging aspect, especially if different
interconnect strategies are implemented on both modules. 

2.3 AO requirements for a smart interconnect

The existence of these three levels of data flows (endpoints to RT, subsystems internal and supervisor
to  RT)  stresses  the  need  for  a  unified interconnect  strategy across  the  system based  on a  single
versatile  solution  able  to  handle  the  different  protocols  and  hardware  topologies.  The  goal  is  to
increase maintainability and modularity by standardizing the interconnect, identified as the real back
bone of the system, but with maximum flexibility in order to keep the ability to implement locally the
relevant protocols and links for an optimized approach.

2.4 State of the art in HPC

In commodity clusters similar specifications are addressed enabled by NIC with specific firmware and
corresponding drivers and end-user API supporting these features and possibly the interoperability
with the run time system for an optimized integration in the programming strategy. The interconnect
strategy is a critical aspect of the HPC system architecture. In an optimized approach, interconnects
are  tightly  integrated  with  systems  components  and  provide  support  for  accelerating  global
communication operations. 

Most basic devices are only in charge of the OSI model Data Link layer (2). The majority of NICs
though take care of the layer 2 through 5 connecting with the OS kernel interface at the Session layer
thus freeing CPU cycles – mainstream protocols such as TCP being handled by the device. Most
advanced devices implement 6th Layer protocols (data encryption, conversion, …) usually with the
help of an, often proprietary, user API and dedicated driver (camera adapters, InfiniBand HCA or
video transceivers are some examples). 

Additionally, FPGAs as well are used in order to free even more CPU resources. Using proprietary
IPs and custom HDL/Verilog development to implement on board calculation before datas are handled
to the Application layer. This kind of development being very specialized, rather costly and long. An
effort  has  been  made  with  openCL in  order  to  allow  developments  for  FPGAs  using  its  C-like
language. But, aside from an Altera implementation of openCL containing I/O channels feature for
any source (in fact memory and UDP), the embded dataflow paradigm where part to all of the datas
comes from the network fabric is not allowed. Rather it focuses on the accelerator paradigm: loading
data, computing, giving results back with interaction with the CPU.
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Future interconnects,  and associated new I/O middleware and APIs,  must  be able to provide the
capability to overlap I/O communication with concurrent computation. Highly efficient interconnects
or networks  and close integration of  their  features  with I/O middleware will  immediately benefit
operators  and  users  of  HPC  systems.  Our  efforts  here  focus  on  the  potential  for  significant
improvements  in  end-to-end  performance  (i.e.,  in  the  I/O  speed)  as  offered  by  introducing  new
features at the interconnect layer. (From ETP4HPC Strategic Research Agenda)

2.5 Proposal for a unified smart interconnect strategy
We propose to develop a concept of smart interconnect, tailored to the AO application, enabling new
features at the Network Interface Controller (NIC) level in order to:

• Locally reduce the bandwidth requirement in the cluster by performing simple data reduction
tasks on the NIC

• Optimize data broadcasting / re-routing depending on environment topology and occupancy
• Handle both data streams from sensors and nodes inter-communications in a unified approach

This work aims at providing a high performance low latency interconnect solution, based on standards
and exploring the use of new smart features in the context of real-time control for AO. It requires to
provide access to the enabled features at the middleware and runtime system levels. The NIC could be
defined as an actor of the data flow processing, available at the programing model level to leverage
both RDMA capabilities for efficient data routing or smart broadcasting and generic computing blocks
for acceleration. 

The developed solution will host smart features including tailored DMA engines, able to be adapted to
different nodes topology, for a tighter integration of system components and efficient data accesses
across the system. Computing blocks, will also be integrable in these data flows design, to leverage
the available FPGA compute capacity and increase the global energy efficiency of the system. The
details of the implementation, relying on QuickPlay, are described below.

In our approach, the user can build, in a unified and simplified framework, his own data flow design
on the NIC (including communication protocols and computing blocks) and the driver and end-user
API to provide access to these features at the middleware and the programming model levels. 

Enabling  smart  features  on  the  NIC  can  be  done  statically,  by  providing  the  user  access  to  a
predefined  collection  of  features,  included  in  the  NIC  design,  through  a  driver  and  an  API
interoperable with standard middleware. We propose to follow another approach in which the user can
build,  in  a  unified  and  simplified  framework,  his  own  data  flow  design  on  the  NIC  (including
communication protocols and computing blocks) and use the driver and the end-user API to provide
access to these features in the programming model. This can be made possible through the use of an
integrated  development  environment  for  the  FPGA  board  including  FPGA  design,  High  Level
Synthesis (HLS) for custom computing blocks,  simulation,  hardware emulation and end-user API
development platform. As the project objective is to find an optimum design for a prototype system,
this architecture will evolve significantly during the course of the project. 

This concept of a smart NIC will be tested with data streams from sensors, transmitted on standard
links and protocols,  being reduced  on the fly while  they are transmitted to the compute engines.
Hence, handling standard protocols (UDP, RTPS), overlapping communication and computations and
direct memory access on the compute engines are the three main features we plan to enable in our
smart interconnect concept. We believe these features also address the needs of a wider application
spectrum  and  our  goals  are  to  make  this  concept  interoperable  with  mainstream  open  source
middleware  (CORBA,  DDS)  and,  through  external  collaborations,  to  study  the  possibility  of
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integrating these features in new programming models.

3 Interconnect definition
The objective 1.2 of the Green Flash project aims at prototyping a new interconnect solution, based on
the FPGA technology, relying on standards and exploring the use of new smart features in the context
of real-time control for AO. Our goal is to develop a COTS NIC solution compatible with existing
high performance switch solutions, based on standard serial protocols (TCP/UDP and RTPS through
10G to 100G Ethernet), and supported in mainstream non proprietary middleware. 

3.1 General architecture
This NIC solution would be based on a modular hardware design with several network link options
and supporting several protocols: TCP, UDP, RTPS (for real-time broadcast) and GigeVision (for the
interface  with  WFS cameras)  through IP blocks  on  a  FPGA used  as  a  controller  between these
network  links  and  a  baseline  PCIe  interface.  This  NIC  should  be  compatible  with  mainstream
middleware: CORBA and DDS, in compliance with SPARTA standards.

Additionally, following the SPARTA WPU approach, we propose to enable advanced features on the
NIC  to  allow  the  user  to  define  complex  data  flows  involving  different  interfaces,  embedded
computing blocks and tunable DMA engines. By doing so, we

• allow the leveraging of available resources on the FPGA to increase the compute performance
of a single node

• allow  the  local  reduction  of  bandwidth  requirements  for  data  transactions  on  the  local
interconnect (PCIe)  

• can introduce tailored DMA approaches to cope with varying node hardware topologies

The following figure sketches the contemplated general design of the smart FPGA-based NIC.

3.2 Hardware description
Our board prototypes will be made around a Kintex 7 FPGA from Xillinx in the first place and then
evolve towards an Arria 10 from Altera (see AD06).

3.2.1 10G / 100G Ethernet

As said in the beginning Ethernet is our target for data link layer, at speed of 10Gbps to 100Gbps.
Different bandwidths exist that have been or are being defined in the IEEE 802.3 Ethernet standard by
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different industrial consortium, 10Gbps (since 2002), 25 and 50 (Sept. 2016), 40 and 100Gbps (since
2010 through 2015 for fiber standardisation). They came in different flavor, as for example 100Gbps
Ethernet is made of either four 25Gbps lanes or ten 10Gbps lanes. The IEEE 802.3 working group is
working  to  expand  Ethernet  speeds  further  in  a  near  future.  As  of  for  2015,  400Gbps  is  under
development based on 100Gpbs technologies the standard is planned for 2017. 1Tbps was envisioned
for 2020 but hasn't been discussed yet. Different bandwidth that are carried by different standard that
could lead to a range products responding to different physical interfaces, bandwidth needs and/or
financial considerations. 

It  is  also interesting to  consider  protocols  overhead but  in  a  closed environment  such as  a  HPC
network – with almost  no packet  loss,  large data  exchange and usually skimmed communication
patterns (no encryption for example) – TCP efficiency with jumbo frames is generally around 99% –
78 bytes of control headers for 8960 bytes of data par packets, considering the packets are full.

Regarding our prototypes, the Kintex 7 based one will manage a QSFP connection consisting of four
10G Ethernet  lanes.  Thus  providing  bandwidth from 10 to  40Gbps,  the  later  being  our  minimal
requirement in the scope of the GreenFlash RTC. E-ELT's WFSs being expected to produce close to
40Gbps  of  data.  The  Arria  10  based  prototype  will,  on  its  part,  handle  up  to  four  QSFP links.
Reaching a mutualised grand total of 160Gbps which could be used as a proof of concept for 100G
Ethernet connectors equipped interconnect.

Regarding FPGA based interconnect,  the majority of recent  products available are PCIe x8 Gen3
capable. Meaning that they can attain a theoretical max bandwidth of 63Gbps. Furthermore that is
partially attainable in regards with the kind of transfers occurring over the PCIe BUS. For example
high-performance  storage  controller  can  approach  95%  of  PCIe  raw  data  rate,  realising  long
continuous unidirectional transfers leading us around 60Gbps. Thus, the limiting factor will be on the
side of the PCIe interface.

3.2.2 PCIe

The interconnect is to be paired with accelerators that usually use the x16 PCIe slots, thus a x8 PCIe
interface will be our solution of choice in order to maximize accelerators density in a given node.
Both FPGAs family are gen3 capable, Kintex 7 with a soft IP and Arria 10 with up to four hard IP.
Being limited by the x8 connector they'll reach the 60Gbps bandwidth mentioned above. That will
comply with our Ethernet connectivity needs but in order to reach 100G Ethernet  higher internal
bandwidth will be needed throught the upcoming 4th version of PCIe specifications.

Hopefully future FPGA SOC (Altera's Stratix10, Xillinx's Virtex Ultrascale+) come with up to 6 PCIe
hard IP for x16 gen3 or 8x gen4, both reaching a max bandwidth of 126Gbps. If we consider that in
the worst case we reach an occupancy of 80% on the PCIe BUS that leads us around 100Gbps. It is to
note that  reaching the full  100G Ethernet  bandwidth is  a feat  of  strength yet  to be attained in a
practical environment but theoretically a 100G ethernet interconnect could be prototyped.

However PCIe is made such that point-to-point exchanges between are always scaled down to the
lowest. Thus, even if PCIe gen4 is backward compatible with lower generations (programmatically
and physically).  A device  x8  gen4 in  a  gen3  PCIe  domain  won't  be  able  to  reach  full  network
bandwidth on the PCIe bus. PCIe gen4 being expected to mature in a near future – connectors and
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data-rates are to be finalized during 2017 – that could allow further investigation and prototyping as a
continuation of the Greenflash effort.

3.2.3 Onboard Memory

Of course smart features should imply some on-board memory. The implementation of smart feature
without memory at user's disposal would be a too great constraint for the product to be of interest. We
aim  our  smart  interconnect  to  allow  implementation  of  calculation  seamlessly  integrated  in  the
communication patterns, therefore it could be legitimate to think that no memory should be needed.
Nevertheless, regarding a simple feature such as a collective reduce operation over the network, the
interconnect would need memory space in order to retain the intermediate results before handling
back the datas to the application level. Meaning a few bytes times the number of elements in the
resulting data set should be enough per feature. Besides this feature is intended to sit next to other
default and/or user defined features who could also need memory space. In the AO domain we could
easily imagine implementing user features from pixel calibration to centroid computation, including
dark/background subtraction or flat field correction… Whatever the user could envision in fact. We're
considering only a few GigaBytes of memory in order to give users  the freedom they'll  need to
implement as many features they see useful. In any case our product's still an interconnect and should
mainly act as one. It may offer some computation offload but is not intended to be an accelerator.

3.3 Development environment
QuickPlay has been developed by PLDA, with the ultimate objective of drastically speeding-up the
development  and validation of  FPGA projects.  It  enables  direct  use  of  FPGA’s by users  without
specific hardware skill, hence making easier the penetration of the FPGA technology in new domains. 

The overall process of implementing a design using QuickPlay is straightforward. It consists of:
1. Developing a C/C++ functional dataflow model of the hardware engine
2. Verifying the functional model with standard C/C++ debug tools
3. Specifying the target FPGA boards and interfaces (PCIe, Ethernet, DDR, QDR, etc)
4. Compiling the HW engine

This process is comprehensive from the design of a functional model to the effective validation of the
FPGA design on hardware platforms supported by QuickPlay. In order for this simple process to work
seamlessly, the generated hardware engine must be guaranteed to function identically to the original
software  model.  QuickPlay  uses  an  intuitive  dataflow  model  that  mathematically  guarantees
deterministic  execution,  regardless  of  the  execution  engine.  Such  model  consists  of  concurrent
functions, called “kernels”, communicating with streaming channels, which correlates well with how
applications would be sketched on a whiteboard. In order to guarantee deterministic behavior, these
kernels  must  communicate  with  each  other  in  a  way  that  prevents  data  hazards,  such  as  race
conditions. This is achieved with streaming channels that are:

• Blocking reads and non-blocking writes,
• Lossless
• Point-to-point.

The objective 1.3 of Green FLASH is to complement the ecosystem of this existing integrated FPGA
development environment by providing data handling and computational blocks tailored to the AO
RTC application, and support for several FPGA options and board designs. The end user API will be
made interoperable with mainstream non proprietary middleware. Our goal is to enrich the QuickPlay
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ecosystem by providing reusable IP cores for communication protocols and custom compute blocks.
Additionally, we plan to provide support in QuickPlay for the various boards developed in the context
of the green Flash project to explore the issues related to multiple hardware support and derive a
possible road map for a wider application range.

3.4 Smart NIC driver
Regarding drivers, one is mandatory in order to control, configure and use a device from the operating
system (OS – Linux here). Usually PLDA (as other constructors) pack their FPGAs with such a driver
and a user level API that eases the board controls.  The driver provides basic functions that allow
read/write operations in the device registers, while the API uses these functions in order to provide
larger services such as memory access, on-board engines configuration, networking configuration and
such. We wish to keep a simple driver for board registers access and make the end user API operable
with mainstream non proprietary middleware as said above. 

Another way would have been to make the OS recognize the device as a network adapter connecting
with the kernel's network stack interface at the right level allowing the use of the legacy APIs for
networking.  Unfortunately  it  might  not  be  an  available  option  given  the  time  for  the  project.
Additionally such an implementation will force to commit ourselves into implementing one particular
protocol on board and in the driver, which at this early stage of developments we think might not be a
wise idea to do so.

3.5 Ecosystem for the AO application
This  project  aim  to  test  different  RTC  topology  (using  GPUs,  FPGAs  clusters),  thus  APIs  and
runtimes such as CUDA or openCL will  probably be present in the software ecosystem, they are
already present in most high-end HPC systems anyway. In this regard interconnect DMA capabilities
should extend to these memory domains in order to avoid unnecessary copies and buffering. Among
the  mainstream  middleware  available,  GreenFlash  targets  mainly  MPI  (openMPI)  and  DDS
(openDDS). Both being mainstream middleware in the HPC community, and non-proprietary. Besides
they provide kernel bypass facilities that can be used at our advantage. Finally both openMPI and
openDDS presents a software architecture that allow oneself to plug is own code in a well defined
interface,  openMPI  implementing  that  to  a  much  greater  extent  than  openDDS.  See  AD08  for
motivations

3.5.1 OpenMPI

OpenMPI is an open source implementation of the Message Parsing Interface specification that is 
developed and maintained by a consortium of academic, research, and industry partners. It has three 
main abstraction layers,

•Open, Portable Access Layer (OPAL): OPAL is the bottom layer of Open MPI's abstractions. Its 
abstractions are focused on individual processes (versus parallel jobs). It provides utility and glue 
code such as generic linked lists, string manipulation, debugging controls, and other mundane—yet
necessary—functionality. OPAL also provides Open MPI's core portability between different 
operating systems, such as discovering IP interfaces, sharing memory between processes on the 
same server, processor and memory affinity, high-precision timers, etc.

•OpenMPI Run-Time Environment (ORTE) (pronounced "or-tay"): An MPI implementation must 
provide not only the required message passing API, but also an accompanying run-time system to 
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launch, monitor, and kill parallel jobs. In Open MPI's case, a parallel job is comprised of one or 
more processes that may span multiple operating system instances, and are bound together to act as
a single, cohesive unit.

•OpenMPI (OMPI): The MPI layer is the highest abstraction layer, and is the only one exposed to 
applications. The MPI API is implemented in this layer, as are all the message passing semantics 
defined by the MPI standard. Since portability is a primary requirement, the MPI layer supports a 
wide variety of network types and underlying protocols. Some networks are similar in their 
underlying characteristics and abstractions; some are not.

Each layer are made of frameworks which can be seen as interfaces implemented into different 
components. The OMPI layer contains the BTL (Byte Transfer Layer) framework which contains a 
different components one for each transport layer supported. On the figure below we can see for the 
BTL, TCP, shared memory and Openfabrics, some of the components available for this framework.

openMPI abstraction layer architectural view showing its three main lay-
ers 

openMPI  Framework  architectural  view,  showing  a  few  frameworks  and
components
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This set of layers, frameworks and components is referred to as the Modular Component Architecture.
Finally openMPI allows users to define their own framework components. Two components are of
peculiar  interest  to us the Point-to-point  Management Layer (PML,  fragmenting, reassembly, top-
layer protocols, etc.) and the BTL (point-to-point byte movement). In these framework we aim to
implement our own components using the Quickplay's driver and user API.

3.5.2 OpenDDS

OpenDDS is an open-source C++ implementation of the Object Management Group's specification
"Data  Distribution  Service  for  Real-time  Systems".  OpenDDS  follows  a  publisher,  subscriber
paradigm. It offers the most common transport protocols which are: TCP/IP, RTPS/UDP, UDP/IP, IP
multicast.

Hopefully, openDDS separates the transport from the higher level protocols in order to accommodate
with legacy transport protocols. That feature will be of great help to us in order to implement our own
transport.

This demonstration of concept on openDDS can be reproduced easily on proprietary RTI DDS, the
latter providing the same kind of pluggable transport adapter1.

4 Implementation plan
This work on smart interconnect is mainly concentrated in WP5 of Green FLASH (see AD02 for a full
list of WP).

The goal of this WP is to provide a comprehensive study of a smart interconnect concept,  in the
context  of  the  AO  application,  including  hardware,  firmware,  middleware  and  development
environment  considerations.  Through  this  integrated  approach,  we  propose  to  provide  a  tailored
interconnect solution for the AO RTC supporting the various standard communication protocols in the
system (internodes, with sensors, etc …) in a unified approach and including the ability to integrate
computing blocks at the NIC level. In this WP several NIC prototypes will be delivered and their

1 https://community.rti.com/examples/creating-custom-transport

https://community.rti.com/examples/creating-custom-transport
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interoperability  with  mainstream  middleware  (including  the  integration  of  these  features  in  the
development environment) will be addressed. 

4.1 Task 5.1: High bandwidth FPGA NIC
Objectives. Develop a common architecture and several versions of a high bandwidth NIC (10 Gbe
and infiniband). Dependencies for this work package are the deliverables listed in WP 2.4, including
the validation of the system architecture, and the integration in QuickPlay of required building block
to develop the Smart NIC, as depicted in WP 6.3.

An iterative process will be used to target “best of class” smart NIC application. It is one of the key
benefit  of  the  used  development  methodology  to  allow  quick  analysis  of  various  architecture
assumptions and also quick validation on FPGA hardware 

So the following sequence of tasks will be executed several time: 

1. Target architecture description

2. Application model development

3. Hardware development, emulation and test

4. Middleware adjustment if necessary

5. Verification and Validation, to check proper and bug free implementation at system level 

6. Performance measurement, to check adherence of current solution to criteria defined in
WP 2.4

7. Turn back to another solution – most likely derived from previous findings. 

Obtained results will be compared after a few iterations to check for improvement and select best
compromise.  Provision  is  made  for  the  delivery  of  four  different  Smart  NIC designs,  under  the
assumption that 2 months will be sufficient to run one iteration and an extra month will be devoted to
analyze the return on experiment.

4.2 Task 5.2: Smart features to middleware
Objectives. The goal of this task is to define and test a strategy for the implementation of the smart
interconnect  features  at  the  level  of  the  middleware.  This  includes  communication  features  for
middlewares oriented towards data broadcasting (DDS) and system monitoring (CORBA) but also
compute capabilities for middleware such as MPI or more generally new programming models.

On  one  hand,  the  efficient  DMA capability  of  the  smart  interconnect  must  be  integrated  in  the
communication pipeline for an efficient broadcasting of the data. This is of particular importance for
the AO application considering the several levels of data flows in the system described in the concept
section  of  this  document.  Of  particular  focus  will  be  the  interaction  between  these  mainstream
middleware  and  the  communication  protocols  with  sensors  and  deformable  optics.  This  work
includes:

• defining a strategy to implement the smart DMA features in open distributions of DDS and
CORBA

• providing  feedback  to  task  6.1  and  6.3  for  the  hardware  /  development  environment
implementations

• performing  a  first  level  of  implementation  of  these  features  in  the  context  of  the  AO
application in open distributions of DDS and CORBA

• assess the performance in relation with task 8.2 and WP9 and compare to a baseline solution
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based on standard middleware distributions

• study the possibility to expend these features to other applications in relation with task 8.2

On the other hand, the possibility of adding computing blocks in the NIC design could be exploited
to:

• locally reduce the bandwidth requirement in the cluster by performing simple data reduction
tasks on the NIC

• leverage more computing power in the node by exploiting the FPGA capabilities

The concept of smart interconnect should thus also be studied at the job scheduling / programming
model level. We propose to study possible strategies for implementing these smart features at this
level through: 

• a survey of mainstream runtime systems and their specifications

• the  definition  of  strategies  to  ensure  the  interoperability  between  these  runtimes  /
programming models,  the  NIC firmware,  driver and development environment in relation
with tasks 6.1 and 6.3

• a possible first level implementation after down selection of a target runtime

• a performance assessment in the context of the AO application, in relation with task 5.2 and
WP9

4.3 Task 5.3: Development environment and IPs
Objectives.  Develop the QuickPlay ecosystem to add smart features and open the way to further
developments. The QuickPlay development environment needs to be enriched with few components /
building blocks to enable the development of the NIC features: 

• Prototype boards developed for the GreenFlash will be integrated in QuickPlay (ref. WP 4)

• Protocol  support:  TCP support,  InfiniBand (IB) support  and Real-Time Publish Subscribe
(RTPS) support will be added to currently supported UDP and PCIe.

• Computing  IP’s:  a  set  of  IP’s  implementing  dedicated  algorithm  will  also  be  added  to
QuickPlay IP Store

• Finally integration of Camera Link and GigE Vision will be analyzed

Following items will be provided for each building block: 

 The Interface and Property View (IV), which represents the block at the highest level of
abstraction. It is a YAML file describing the component in term of in terms of available
interface ports and their configurability, the IP high level configuration parameters, the IP
nature from a QuickPlay point of view (kernel, memory, interfacing IP).

 The Functional View (FV) which represents the behavior of the block from a programmer
perspective. It is a source code which can be used to emulate the IP. C++ is currently
used, but different languages could be considered if required

 An IP-XACT description of  the  block,  along with a configuration script  in  case of  a
dynamic block (that is a block which configuration will depend upon its specific usage in
QuickPlay).

Proper integration of the building block within QuickPlay will be verified and validated on hardware. 

Functional improvement of QuickPlay:
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• How to implement DMA mechanism between the Smart  Interconnect and all  the element
connected to it (GPU’s, other accelerator components / devices) will be studied and developed

• How to secure scalability of the number of used NIC devices within a single application will
also be studied and developed

From a middleware perspective, each building block will require integration of a specific driver to
accommodate Quickplay API. The question of specific API primitives for proper use of the smart
interconnect concept and support of existing Network Interconnect libraries will also be addressed.
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